

RESOLUÇÃO Nº 030/2023-CEPE, DE 30 DE MARÇO DE 2023.

Aprova a alteração do Projeto Político-Pedagógico do curso de Química -Licenciatura, do *campus* de Toledo.

O CONSELHO DE ENSINO, PESQUISA E EXTENSÃO da Universidade Estadual do Oeste do Paraná (Unioeste), em reunião ordinária realizada no dia 30 de março de 2023,

Considerando o contido na CR nº 63977/2022, de 09 de junho de 2022.

RESOLVE:

Art. 1º Aprovar, conforme o anexo desta resolução, a alteração do Projeto Político-Pedagógico do curso de Química - Licenciatura, do Centro de Engenharias e Ciências Exatas - CECE, do *campus* de Toledo, aprovado pela Resolução nº 223/2015-CEPE e alterado parcialmente pela Resolução nº 260/2018-CEPE, com implantação gradativa a partir do ano letivo de 2023.

Parágrafo único: Ficam convalidadas as atividades já realizadas.

Art. 2º Esta Resolução entra em vigor nesta data.

Cascavel, 30 de março de 2023.

ALEXANDRE ALMEIDA WEBBER Presidente do Conselho de Ensino, Pesquisa e Extensão

I - IDENTIFICAÇÃO

CURSO: Química									
CAMPUS: Toledo									
CENTRO: Engenharias e Ciências Exatas									
NÚMERO DE VAGAS: 36 TURNO: Noturno									
LOCAL DE OFERTA: Campus Toledo									
CARGA-HORÁRIA EM HORAS	: 3201								
X PRESENCIAL									
MODALIDADE DE OFERTA À DISTÂNCIA									
		BACHARE	LADO						
GRAU DE CURSO	Х	LICENCIA	ΓURA						
		TECNOLÓ	GICO						
INTEGRALIZAÇÃO	Temp	o mínimo: 4	lanos						
INTEGRALIZAÇÃO	Temp	o máximo:	8 anos						
COM ÊNFASE EM: VAGAS:									
COM HABILITAÇÃO EM:				VAGAS:					
ANO DE IMPLANTAÇÃO: 2023									

II – LEGISLAÇÃO

DE AUTORIZAÇÃO E CRIAÇÃO DO CURSO (Resoluções COU/CEPE, Parecer CEE/PR, Resolução Seti e Decreto)

Resolução nº 012/97 - COU de 24 de abril de 1997

Parecer nº 322/97 - CEE

Resolução nº 027/97 - SETI

Resolução nº 166/99 - CEPE de 19 de agosto de 1999

Ato Executivo nº 001/98 – GRE de 03 de março de 1998 (autorização)

DE RECONHECIMENTO E RENOVAÇÃO DE RECONHECIMENTO DO CURSO (Decreto, Resolução Seti, Parecer CEE/PR)

Decreto nº 8465/2010, Parecer nº 58/10 - CEE

BÁSICA (Resolução e Parecer do CNE, do CEE e da Unioeste, as DCN's do curso; e Legislação que regulamenta a profissão, quando for o caso)

Resolução nº 85/2021-CEPE.

Resolução nº 194/2021-CEPE

Resolução nº 0138/2014 - CEPE

DIRETRIZES CURRICULARES DO CURSO

- a) Lei de Diretrizes e Bases da Educação Nacional nº 9394/96;
- b) Diretrizes Curriculares Nacionais do Licenciado em Química (DCN's Parecer nº CNE/CES 1.303/2001e Resolução CNE/CES nº 08, 11/03/2002, que estabelece as Diretrizes Curriculares para os cursos de Química Bacharelado e Química Licenciatura);
- c) Diretrizes Curriculares Nacionais para Educação das Relações Étnico-raciais e para o Ensino de História e Cultura Afro-brasileira e Indígena (Lei nº 11.645 de 10/03/2008; Resolução nº CNE/CP nº 01 de 17 de junho de 2004); Deliberação nº 04/2006 CEE, de 02/08/2006, que institui normas complementares às Diretrizes Curriculares Nacionais para a Educação das Relações Étnico-Raciais e para o Ensino de História e Cultura Afro-Brasileira e Africana;
- d) Resolução CNE/CES nº 3/2007 e Parecer CNE/CES nº 261/2007 que dispõe sobre procedimentos a serem adotados quanto ao conceito de hora-aula, e dá outras providências;
- e) Decreto nº 5;296/2004 estabelece condições de acesso para pessoas com deficiência e/ou mobilidade reduzida, com prazo de implantação das condições até dezembro de 2008; regulamenta as Leis nºs 10.048, de 8 de novembro de 2000, que dá prioridade de atendimento às pessoas que especifica, e 10.098, de 19 de dezembro de 2000, que estabelece normas gerais e critérios básicos para a promoção da acessibilidade das pessoas portadoras de deficiência ou com mobilidade reduzida, e dá outras providências;
- f) Disciplina de Libras, Decreto nº 5.626/2005, que regulamenta a Lei nº 10.436, de 24 de abril de 2002, que dispõe sobre a Língua Brasileira de Sinais Libras, e o art. 18 da Lei nº 10.098, de 19 de dezembro de 2000:
- g) Resolução CNS nº 196, de 10 de outubro de 1996, que aprova as diretrizes e normas regulamentadoras de pesquisas envolvendo seres humanos;
- h) Portaria Normativa nº 40, de 12 de dezembro de 2007, alterada pela Portaria Normativa nº 23, de 1 de dezembro de 2010. As informações acadêmicas do Curso de Química Licenciatura exigidas na portaria em tela estão disponibilizadas na forma impressa na secretaria do curso e na forma virtual no site da universidade;
- i) Deliberação nº 02/2009 CEE estabelece normas para a organização e a realização de Estágio obrigatório e não obrigatório na Educação Superior;
- j) Lei nº 9.795, de 27 de abril de 1999 e Decreto nº 4.281 de 25 de junho de 2002. Resolução CNE/CES nº 2 de 15 de junho de 2012, que estabelece as Diretrizes Curriculares Nacionais para a Educação Ambiental, Lei Estadual nº 17.505 de 11 de janeiro de 2013 que institui a Política Estadual de Educação Ambiental e o Sistema de Educação Ambiental e adota outras providências. Deliberação nº 04/2013-CEE, que estabelece normas para a Educação Ambiental no Sistema Estadual de Ensino do Paraná, com fundamento na Lei Federal nº 9795/1999;

- k) Resolução nº 2/2019 que indica no art.13, Grupo II as habilidades a ser desenvolvidas sendo a I – Proficiência em Língua Portuguesa falada e escrita, leitura, produção e utilização dos diferentes gêneros de textos considerando o domínio da norma culta;
- Parecer CNE/CP nº 09/2001, que institui as Diretrizes Curriculares Nacionais para a Formação de Professores da Educação Básica, em nível superior, curso de Licenciatura, de Graduação Plena;
- m) Parecer CNE/CP nº 21/2001, que dispõe sobre a duração e carga horária dos cursos de Formação de Professores da Educação Básica, em nível superior, curso de Licenciatura, de Graduação Plena;
- n) Parecer CNE/CP nº 27/2001, que dá nova redação ao item 3.6, alínea c, do Parecer CNE/CP nº 09/2001, que dispõe sobre as Diretrizes Curriculares Nacionais para a Formação de Professores da Educação Básica, em nível superior, curso de Licenciatura, de Graduação Plena;
- o) Parecer CNE/CP nº 28/2001, que dá nova redação ao Parecer CNE/CP nº 21/2001, que estabelece a duração e carga horária dos cursos de Formação de Professores da Educação Básica, em nível superior, curso de Licenciatura, de Graduação Plena;
- p) Lei nº 13.146, de 06 de julho de 2015 que institui a Lei Brasileira de Inclusão da Pessoa com Deficiência (Estatuto da Pessoa com Deficiência);
- q) Deliberação CEE nº 07/2006, de 10 de novembro de 2006, de inclusão dos conteúdos de História do Paraná no currículo da Educação Básica;
- r) Resolução CNE/CP nº 02 de 1º de julho de 2015 que define as Diretrizes Curriculares Nacionais para a Formação Inicial em Nível Superior (cursos de Licenciatura, cursos de Formação Pedagógica para Graduação e cursos de Segunda Licenciatura) e para a formação continuada;
- s) Resolução CNE/CP nº 02/2019, que define as Diretrizes Curriculares Nacionais para a Formação Inicial de Professores para a Educação Básica e institui a Base Nacional Comum para a Formação Inicial de Professores da Educação Básica (BNC-Formação).

LEGISLAÇÃO UNIOESTE

- a) Regimento Geral da Unioeste;
- Resolução nº 095/2016-CEPE, que aprova os turnos de oferta, o horário de funcionamento, a duração da aula e define o trabalho discente efetivo nos cursos de graduação da Unioeste;
- c) Resolução nº 138/2014-CEPE, aprova as diretrizes para o ensino de graduação da Unioeste, revoga a Res. 287/2008-CEPE;
- d) Resolução nº 097/2016-CEPE, que aprova o regulamento da oferta de disciplinas nos cursos de graduação da Unioeste;
- e) Resolução nº 250/2021-CEPE, Regulamento Geral de Estágio Supervisionado dos Cursos de Graduação;
- f) Resolução nº 304/2004-CEPE, Regulamento Geral de Trabalho de Conclusão de Curso;

- g) Resolução nº 099/2016-CEPE, que aprova o regulamento de Atividades Acadêmicas Complementares;
- h) Resolução nº 034/2000-COU, critérios para elaboração e a determinação do índice de Atividade de Centro;
- i) Resolução nº 317/2011-CEPE, institui o Núcleo Docente Estruturante (NDE), nos cursos de graduação;
- j) Resolução nº 093/2016-CEPE, que Regulamenta o Sistema de Gestão Acadêmica Academus, dos cursos de graduação da Unioeste;
- k) Resolução nº 098/2016-CEPE, que aprova o regulamento para a oferta de atividades na modalidade de educação à distância nos cursos presenciais de graduação da Universidade Estadual do Oeste do Paraná;
- I) Resolução nº 101/2016-CEPE, que aprova o Regulamento de Avaliação da Aprendizagem, Segunda Chamada de Avaliação e Revisão de Avaliação;
- m) Resolução nº 100/2016-CEPE, que aprova o Regulamento do Aproveitamento de Estudos e de Equivalência de Disciplinas nos Cursos de Graduação, na Unioeste;
- n) Resolução nº 085/2021-CEPE, que aprova o regulamento das atividades acadêmicas de extensão na forma de componentes curriculares para os cursos de graduação, na modalidade presencial e a distância, da Unioeste;
- o) Resolução nº 194/2021-CEPE, que aprova Regulamento de Elaboração e Alteração de Projeto Político-Pedagógico de Curso de Graduação na Unioeste.

Legislação do MEC-DCNS e Conselho Estadual de Educação-CEE

- a) Lei de Diretrizes e Bases nº 9394/96;
- b) Lei n.º 10.861, de 14 de abril de 2004 Institui o Sistema Nacional de Avaliação da Educação Superior SINAES e dá outras providências;
- c) Deliberação CEE/PR n.º 07/2020, dispõe sobre a oferta de carga horária na modalidade de Educação à Distância EAD em cursos de graduação presenciais de Instituições de Educação Superior IES pertencentes ao Sistema Estadual de Ensino;
- d) Resolução CNE/CP nº 02/2019, de 20 de dezembro de 2019, define as Diretrizes Curriculares Nacionais para a Formação Inicial de Professores para a Educação Básica e institui a Base Nacional Comum para a Formação Inicial de Professores da Educação Básica (BNC-Formação);
- e) Resolução CNE/CP nº 1, de 27 de outubro de 2020, dispõe sobre as Diretrizes Curriculares Nacionais para a Formação Continuada de Professores da Educação Básica e institui a Base Nacional Comum para a Formação Continuada de Professores da Educação Básica (BNC-Formação Continuada);
- f) Parecer CNE/CP 21/2001, que dispõe sobre a Duração e carga horária dos cursos de Formação de Professores da Educação Básica, em nível superior, curso de licenciatura, de graduação plena;
- g) Parecer CNE/CP 27/2001, que dá nova redação ao item 3.6, alínea c, do Parecer CNE/CP 9/2001, que dispõe sobre as Diretrizes Curriculares Nacionais para a Formação

- de Professores da Educação Básica, em nível superior, curso de licenciatura, de graduação plena;
- h) Parecer CNE/CP 28/2001, que dá nova redação ao Parecer CNE/CP 21/2001, que estabelece a duração e a carga horária dos cursos de Formação de Professores da Educação Básica, em nível superior, curso de licenciatura, de graduação plena;
- Resolução CNE/CP nº 1 de 17/06/2004, que institui Diretrizes Curriculares Nacionais para a Educação das Relações Étnico-Raciais e para o Ensino de História e Cultura Afro-Brasileira e Africana;
- j) Decreto nº 5.296/2004, regulamenta as Leis nºs 10.048, de 8 de novembro de 2000, que dá prioridade de atendimento às pessoas que especifica, e 10.098, de 19 de dezembro de 2000, que estabelece normas gerais e critérios básicos para a promoção da acessibilidade das pessoas portadoras de deficiência ou com mobilidade reduzida, e dá outras providências;
- k) Lei nº 13.146 de 06 de julho de 2015, institui a Lei Brasileira de Inclusão da Pessoa com Deficiência (Estatuto da Pessoa com Deficiência);
- Deliberação CEE nº 04/2006, de 02/08/2006, que institui normas complementares às Diretrizes Nacionais para a Educação das Relações Étnico-Raciais e para o ensino de História e Cultura Afro-Brasileira e Africana;
- m) Deliberação CEE nº 07/2006, de 10/11/2006, de inclusão dos conteúdos de História do Paraná no currículo da Educação Básica;
- n) Decreto nº 5626/2005 que regulamenta a Lei nº 10.436, de 24 de abril de 2002, que dispõe sobre a Língua Brasileira de Sinais– Libras, e o art. 18 da Lei nº 10.098, de 19 de dezembro de 2000. Decreto nº 9057, de 25 de maio de 2017;
- o) Decreto nº 9057, de maio de 2017. Regulamenta o art. 80 da Lei nº 9.394, de 20 de dezembro de 1996, que estabelece as diretrizes e bases da educação nacional. Oferta de até 20% da carga horária total do curso na modalidade a distância nos cursos presenciais e reconhecidos. Resolução nº 098/2016-CEPE, de 30 de junho de 2016. Aprova o regulamento para a oferta de atividades na modalidade de educação à distância nos cursos presenciais de graduação da Universidade Estadual do Oeste do Paraná:
- p) Deliberação nº 02/2009 CEE estabelece normas para a organização e a realização de Estágio obrigatório e não obrigatório na Educação Superior;
- q) Portaria Normativa nº 11, de 20 de junho de 2017 Estabelece normas para o credenciamento de instituições e a oferta de cursos superiores a distância, em conformidade com o Decreto nº 9.057, de 25 de maio de 2017;
- p) Portaria Normativa nº 21, de 21 de dezembro de 2017 Dispõe sobre o sistema e-MEC, sistema eletrônico de fluxo de trabalho e gerenciamento de informações relativas aos processos de regulação, avaliação e supervisão da educação superior no sistema federal de educação, e o Cadastro Nacional de Cursos e Instituições de Educação Superior Cadastro e-MEC;
- q) Portaria Normativa nº 22, de 21 de dezembro de 2017 Dispõe sobre os procedimentos de supervisão e monitoramento de instituições de educação superior e de cursos

- superiores de graduação e pós-graduação *lato sensu*, nas modalidades presencial e a distância, integrantes do sistema federal de ensino;
- r) Portaria Normativa nº 23, de 21 de dezembro de 2017 Dispõe sobre o fluxo dos processos de credenciamento e recredenciamento de instituições de educação superior e de autorização, reconhecimento e renovação de reconhecimento de cursos superiores, bem como seus aditamentos;
- s) Resolução CNS nº 466, de 12 de dezembro de 2012, que aprova as diretrizes e normas regulamentadoras de pesquisas envolvendo seres humanos;
- t) Resolução CNE/CES nº 3/2007 e Parecer CNE/CES nº 261/2006 que dispõe sobre procedimentos a serem adotados quanto ao conceito de hora-aula, e dá outras providências;
- u) Parecer nº 8 de 6 de março de 2012 CNE/CP. Resolução nº 1 de 30 de maio de 2012
 CNE/CP Institui as Diretrizes Curriculares Nacionais para Educação em Direitos Humanos. Deliberação 02/2015-CEE que dispõe sobre as Normas Estaduais para a Educação em Direitos Humanos no Sistema Estadual de Ensino do Paraná;
- v) Lei nº 9.795, de 27 de abril de 1999 e Decreto nº 4.281 de 25 de junho de 2002. Resolução CNE/CES nº 2 de 15 de junho de 2012. Há integração da educação ambiental às disciplinas do curso de modo transversal, contínuo e permanente. Deliberação nº 04/2013-CEE estabelece normas para a Educação Ambiental no Sistema Estadual de Ensino do Paraná, com fundamento na Lei Federal nº 9795/1999, Lei Estadual nº 17.505/2013 e Resolução CNE/CP nº 02/2012;
- w) Lei nº 13.185 de 6 de novembro de 2015 Institui o Programa de Combate à Intimidação Sistemática (Bullying);
- x) Lei nº 10.224, de 15 de maio de 2001, introduziu no Código Penal a tipificação do crime de assédio sexual;
- y) Lei nº 12.250, de 9 de fevereiro de 2006. Veda o assédio moral no âmbito da administração pública estadual direta, indireta e fundações públicas;
- z) Lei nº12.764 de 27 de dezembro de 2012 Institui a Proteção do Direito da Pessoa com Transtorno do Espectro Autista:
- aa) Deliberação CCE n.º 02/2016 Dispõe sobre as Normas para a Modalidade Educação Especial no Sistema Estadual de Ensino do Paraná;
- bb) Deliberação CEE/PR nº 06/2020, fixa normas para as Instituições de Educação Superior Mantidas pelo Poder Público Estadual e Municipal do Estado do Paraná e Dispõe sobre o exercício das funções de regulação, supervisão e avaliação das instituições e de seus cursos.

III – ORGANIZAÇÃO DIDÁTICO-PEDAGÓGICA

JUSTIFICATIVA:

Por se entender que um Projeto Político Pedagógico é um plano dinâmico em permanente processo de avaliação e reflexão, desde a sua implantação o Curso de Química

Licenciatura procurou estar em sintonia com o processo de ensino e aprendizagem e com as legislações vigentes que regem a atuação do profissional nesta modalidade. Neste sentido, o Curso criou no ano de 2011 o Núcleo Docente Estruturante (NDE) que permitiu discussões e avaliações sistemáticas do PPP. Neste período, foram feitas consultas aos acadêmicos sobre os diferentes aspectos do Curso com enfoque nos componentes curriculares e considerando três eixos básicos: Didático-Pedagógico, Atuação Docente e Infraestrutura. Apesar da baixa adesão, por parte dos acadêmicos, chamou a atenção do NDE e do colegiado de Curso o fato de que a disciplina de Matemática Básica que havia sido proposta com o objetivo de promover um nivelamento entre os conteúdos estudados no ensino médio e aqueles necessários às disciplinas do curso de Química e com isso facilitar a aprendizagem dos estudantes nas demais disciplinas do curso tornou-se foco de retenção destes estudantes. Isto pode ser observado nos altos índices de reprovação ou desistência nos semestres iniciais. Tendo em vista essas e outras dificuldades de fluidez dos acadêmicos, detectada nas séries iniciais, optou-se por retirar do PPP a disciplina de Matemática Básica, além de ofertar as disciplinas das áreas de Matemática e Física a partir do segundo semestre do primeiro ano. Isto por se considerar que após o primeiro semestre a vivência no ambiente universitário desenvolve no acadêmico o amadurecimento intelectual necessário para um melhor aproveitamento do ensino e aprendizagem. A ementa da disciplina de Matemática Básica fica então contemplada na ementa da disciplina de Cálculo I. Esta ação está em conformidade com a Resolução nº 02 de dezembro de 2019 e com fundamento no Parecer CNE/CP nº 22, de 07 de novembro de 2019, homologada pela Portaria MEC nº 2.167, de 19 de dezembro de 2019, publicada no DOU de 20 de dezembro de 2019, Seção 1, pág.142. Portanto, no processo de consolidação da modalidade Licenciatura, constatou-se que algumas alterações poderiam ser implementadas sem acarretar grandes despesas financeiras, entre elas, não ofertar disciplinas com maior índice de reprovação no primeiro semestre, incluir a disciplina de Português Instrumental, além da redução dos pré-requisitos a um número mínimo necessário. Tais ações são significativas no sentido de ampliar ainda mais as possibilidades de formação do acadêmico, além de tornar o curso mais dinâmico.

As Diretrizes Curriculares Nacionais para Educação das Relações Étnico-Raciais e para o Ensino de História e Cultura Afro-Brasileira, Africana e Indígena, nos termos da Lei nº 9.394/96, com a redação dada pelas Leis nºs 10.639/2003 e 11.645/2008, Deliberação

CEE/PR nº 04/06 e da Resolução CNE/CP nº 1/2004, fundamentada no Parecer CNE/CP nº 3/2004 estão contempladas nas disciplinas História e Filosofia para Ensino de Química e Ensino de Química e Formação Docente. Resolução nº 02 de dezembro de 2019 com fundamento no Parecer CNE/CP nº 22 de 07 de novembro de 2019, homologada pela Portaria MEC nº 2.167, de 19 de dezembro de 2019, publicada no DOU de 20 de dezembro de 2019, Seção 1, pág.142.

Quanto às Condições de acessibilidade para pessoas com deficiência ou mobilidade reduzida, conforme disposto na CF/88, art. 205, 206 e 208, na NBR 9050/2004, da ABNT, nas Leis nos 10.048/2000 e 10.098/2000, nos Decretos nos 5.296/2004, 6.949/2009 e 7.611/2011 e na Portaria nº 3.284/2003 o Campus de Toledo vem adaptando os prédios, salas de aulas, laboratórios, setor administrativo e demais dependências para atender as leis acima citadas. As edificações novas já são construídas nos padrões estabelecidos pela legislação. Os serviços de transporte, os sistemas e meios de comunicação e informação, por pessoa com deficiência ou com mobilidade reduzida (art. 8°do Decreto n° 5.296, de 2 de dezembro de 2004, Lei nº 10.098, de 8 de novembro de 2000, Lei nº 12.764, de 27 de dezembro de 2012). Deliberação CEE/PR n.º 02/2016 - Normas para a modalidade de Educação Especial no Sistema Estadual de Ensino do Paraná: Acessibilidade pedagógica e atitudinal. A abordagem de conteúdos e materiais didáticos adaptados à pessoa com deficiência também tem merecido atenção por parte da administração do Campus e, nesse intuito, aqui cabe destacar o trabalho realizado pelo Programa de Educação Especial – PEE da Unioeste, que auxilia as coordenações de curso no atendimento de pessoas portadoras de deficiência e no acompanhamento e permanência destes acadêmicos nos cursos de graduação. Acessibilidade pressupõe a eliminação de barreiras arquitetônicas, pedagógicas, atitudinais e a promoção de tecnologia assistida. Para os acadêmicos que apresentação restrição de fala e audição foi instituída a disciplina de Libras no rol de disciplinas do PPP do curso de Química Licenciatura, conforme Decreto nº 5.626/2005. Os temas concernentes às Diretrizes Curriculares Nacionais para a Educação em Direitos Humanos (Parecer CNE/CP nº 8, de 06 de março de 2012; Resolução CNE/CP nº1, de 30 de maio de 2012, Deliberação n.º 02/2015-CEE/PR), serão discutidos nas disciplinas: Ensino de Ciências e Formação Docente, Prática de Ensino e Estágio Supervisionado, além de se trabalhar a temática em projetos e palestras.

O Projeto Político Pedagógico atende a Legislação referente à Educação Ambiental como parte da formação do acadêmico (Lei nº 9.795, de 27 de abril de 1999 e Decreto nº 4.281 de 25 de junho de 2002, Resolução CNE/CES nº 2 de 15 de junho de 2012). Além disso, buscou integrar a Educação Ambiental aos componentes curriculares do curso de modo transversal, contínuo e permanente (Deliberação nº 04/2013- CEE, com fundamento na Lei Federal nº 9795/1999, Lei Estadual nº 17.505/2013 e Resolução CNE/CP nº 02/2012).

A utilização no conjunto de disciplinas que contribuirão com a totalidade ou parcialmente com os 10% (dez por cento) exigidos do total de créditos curriculares para a graduação em conformidade com a Lei nº13.005 de 25 de junho de 2014, PNE 2014-2024, Resolução CNE/CES nº 7, de 18 de dezembro de 2018, Parecer CNE/CES nº 608/2018, homologado pela Portaria MEC nº 1.350, de 14 de dezembro de 2014, parecer CNE/CES nº 498, de 6 de agosto de 2020, DOU de 28, de dezembro, de 2020. Dentre o quadro dos componentes curriculares utilizados com atividades acadêmicas de extensão como: Tecnologias Computacionais para a Ciências, Química: Tecnologia, Inovação e Sustentabilidade I e Química: Tecnologia, Inovação e Sustentabilidade II. As ações de extensão serão descritas adiante. Os componentes curriculares são: Laboratório de Fundamentos da Química I e II, Laboratório de Química Analítica, Laboratório de Química Inorgânica I e II, Laboratório de Química Orgânica I e II, Laboratório de Físico-Química e Química Inorgânica II. Questões relacionadas às atividades curricularizadas da extensão na graduação também estarão presentes nas Semanas Acadêmicas realizados no término dos semestres letivos.

Em conformidade à Lei nº13.005 de 25 de junho de 2014 (PNE 2014-2024), Resolução CNE/CES nº 7 de 18 de dezembro de 2018, Parecer CNE/CES nº 608/2018, homologado pela Portaria MEC nº 1.350, de 14 de dezembro de 2014, parecer CNE/CES nº 498 de 6 de agosto de 2020, DOU de 28 de dezembro, de 2020; o curso de Química Licenciatura destina 10% de sua carga horária total para atividades de Extensão Universitária. Estas atividades estão integradas ao currículo na forma de componentes curriculares que são desenvolvidos de forma exclusivamente teórica e de forma teórico/práticas, conforme tabela 1. Atividades curricularizadas da extensão na graduação também estão presentes nas Semanas Acadêmicas extensionistas realizadas ao término de cada ano letivo.

Considerando o componente curricular Monografia de Graduação, o acadêmico será orientado para a observância das Normas Regulamentadoras de Pesquisas envolvendo Seres Humanos (Resolução CNS nº 466 de 12 de dezembro de 2012) uma vez que muitos estudos relacionados à área de Educação em Química envolvem pesquisas com seres humanos. A UNIOESTE conta com o Comitê de Ética em Pesquisa com Seres Humanos responsável pelo acompanhamento e avaliação das pesquisas envolvendo seres humanos.

HISTÓRICO:

O curso de Química na modalidade de Licenciatura, no período vespertino, foi implantado em 1998 por meio do Parecer nº 322/97 e reconhecido pelo Decreto Estadual nº 5838 de 03/07/2003, com a oferta de 40 vagas anuais.

Em 2003, o Projeto Político Pedagógico do curso de Química Licenciatura passou por uma reestruturação, buscando atender às regulamentações exaradas pelo Conselho Nacional de Educação (Diretrizes Curriculares da Área, Regulamentações de Carga Horária, Resoluções sobre Estágios, entre outras) e às orientações provenientes da avaliação externa (MEC). Neste período, o curso passou a ofertar as disciplinas em caráter semestral.

Também em 2003, atendendo aos anseios do grupo de docentes que atuava no Curso, foi criado de forma concomitante à Licenciatura o grau de Bacharelado (Resolução nº 024/2003 – CEPE e Resolução nº 019/2003 - COU), buscando atender às novas concepções de conhecimento e de ensino voltados à formação de um profissional com amplas possibilidades de atuação na área de Química.

Ainda em 2003, ocorreu a ampliação de vagas para a licenciatura (Resolução nº 110/03-CEPE e Resolução nº 059/03-COU), com a oferta de 30 vagas no turno de funcionamento noturno e redução do número de vagas da Licenciatura no período vespertino de 40 para 25 vagas anuais. A oferta do curso em período noturno deu-se para atender não somente à necessidade de formar um maior número de profissionais para a área de Ensino de Química, como também para atender parte da população que não tinha condições de frequentar a universidade no período diurno.

Em 2004 o Projeto Político Pedagógico sofreu algumas alterações referentes a ajustes nas cargas horárias de algumas disciplinas, Resolução nº 262/2004 – CEPE, para o período noturno e vespertino.

Já em 2006, ocorreu a suspensão da oferta das 25 vagas da Química-Licenciatura vespertina, seguindo a determinação da Pró-Reitoria de Graduação em seu memorando nº 166/2006-PRG.

Em 2008, o curso passa por uma nova reestruturação (Resolução nº 381/2008 – CEPE), buscando atender à Resolução nº 345/2005 - CEPE, que estabelece o limite máximo da carga-horária de componentes curriculares em regime semestral em 25% da carga-horária total do curso. A implantação desta nova proposta com a maioria das disciplinas sendo ofertadas anualmente deu-se a partir de 2009, sendo ofertadas 30 vagas em período noturno.

A proposta implantada em 2009, passou por alguns ajustes com relação ao nome de disciplinas (Resolução nº 145/2011 – CEPE), alterações em quadro de equivalências e prérequisitos (Resolução nº 320/2011 – CEPE) e definição das disciplinas semestrais oferecidas no primeiro e segundo semestre (Resolução nº 164/2014 – CEPE).

No ano de 2015, o PPP do Curso passou por uma terceira reestruturação, buscando se adequar as Diretrizes Curriculares Nacionais; Resolução CNE/CP nº 02 de 1º de julho de 2015 que define as Diretrizes Curriculares Nacionais para a Formação Inicial em Nível Superior (cursos de Licenciatura, cursos de Formação Pedagógica para Graduação e cursos de Segunda Licenciatura) e para a formação continuada.

CONCEPÇÃO, FINALIDADES E OBJETIVOS:

As modificações em todos os setores da vida humana exigem um repensar dos currículos de formação de profissionais nas mais diferentes áreas do conhecimento. No que se refere aos cursos de formação dos profissionais licenciados em Química, seja para o exercício como docente de nível superior ou na educação básica, como pesquisador ou generalista, discute-se a reformulação dos currículos, considerando-se uma visão de mundo atualizada e uma nova postura frente aos problemas impostos pelo contexto em que suas atividades são inseridas. Por outro lado, no que tange ao aspecto sócio/político/cultural, esses currículos deverão também se adequar às novas orientações, formando indivíduos capazes de se integrar e propor uma nova sociedade.

Um processo de reformulação curricular, seguido de uma revisão global da prática pedagógica, constitui-se em um importante pré-requisito para o começo de mudanças mais abrangentes nos cursos de formação de professores e de pesquisadores. Porém, isto deve ser feito de maneira regular e constante, a partir das necessidades detectadas no interior

destes cursos, levando-se em consideração as peculiaridades das áreas e dos contextos em que atuam.

De acordo com Chassot¹, é preciso ensinar Química dentro de uma concepção que destaque o papel social desta Ciência, por intermédio de uma contextualização social, política, filosófica, histórica e econômica.

Nesse contexto, a Universidade deve, portanto, se responsabilizar em formar indivíduos capazes de perceber as relações entre Ciência, Tecnologia e Sociedade. Além de tornar cidadãos mais críticos, capazes de trabalhar em equipe e capazes de propor modificações na sociedade. Assim, faz-se necessária que estejamos constantemente refletindo sobre a nossa educação, metodologias de ensino e aprendizagem e desta forma atualizando nossos currículos para que tornemos os cursos de formação profissional o mais próximo da realidade do nosso acadêmico.

A Universidade Estadual do Oeste do Paraná já desempenha um papel importante como um centro de desenvolvimento educacional e tecnológico no Oeste do Paraná, sendo o curso de Química Licenciatura um dos principais responsáveis por esse papel no campus de Toledo. A esse respeito, o campus de Toledo da Unioeste é o pioneiro e um dos principais polos geradores de conhecimento e de mão-de-obra especializada em Química na região, influenciando diretamente no progresso, tanto educacional, como industrial.

Dessa forma, o Projeto Político-Pedagógico ora proposto para o curso de Química na modalidade de Licenciatura pretende desenvolver conhecimentos básicos, específicos e profissionais. Além disso, busca uma formação ampla e diversificada, propondo em sua estrutura componentes curriculares complementares, optativas e de caráter extensionista, buscando espaços para que o acadêmico tenha uma formação complementar, à sua livre escolha. Os conhecimentos químicos, pedagógicos e as atividades práticas estão direcionados ao ensino de Química, tendo como ponto de partida uma abordagem cotidiana, interdisciplinar e interativa, com atividades direcionadas à sala de aula, sem, contudo, implicar em limitações no que diz respeito às atribuições técnicas.

Cada um dos componentes curriculares deste Projeto contribuirá com metodologias, técnicas e conteúdos específicos, de forma a constituir-se um corpo de conhecimentos básicos para o exercício da profissão de Licenciado em Química, seja em instituições de ensino, pesquisa ou na indústria.

~-

¹CHASSOT, A. Para que(m) é útil o ensino? Ed. UNIJUI, Ijuí,1995.

O processo ensino e de aprendizagem deverá ser contínuo, envolvendo professores do curso de Química, acadêmicos e a Universidade, empregando-se os recursos disponíveis. Assim, ao longo do curso serão incentivados os trabalhos de ensino, pesquisa e de extensão, visando despertar o gosto pela investigação científica a partir do desenvolvimento do espírito científico e do pensamento reflexivo direcionado à sua futura área de atuação.

O curso de Química em sua modalidade Licenciatura também tem por objetivo estimular a divulgação de trabalhos de ensino, pesquisa e extensão nas formas de publicações, participação em eventos científicos e outras formas de comunicação disponíveis. Estas atividades, já tão comuns entre nossos professores e acadêmicos vêm a se somar ações da curricularização da extensão no nosso PPP agora proposto. Além disso, o PPP do curso prevê o contato antecipado do acadêmico com a atividade profissional a partir da realização do Estágio Supervisionado, conforme a Resolução nº 385/2008-CEPE, e da Monografia de Graduação, conforme a Resolução nº 304/2004-CEPE, como forma do acadêmico vivenciar experiências reais em seu futuro ramo de atuação.

PERFIL DO PROFISSIONAL - FORMAÇÃO GERAL E ESPECÍFICA:

O Licenciado em Química, segundo as Diretrizes Curriculares Nacionais, em seu Parecer CNE/CES nº 1.303/2001 deverá ter formação generalista, mas sólida e abrangente em conteúdo dos diversos campos da Química, bem como preparação adequada à aplicação pedagógica do conhecimento e experiências de Química e de áreas afins na atuação profissional como educador na educação básica.

Ainda segundo as diretrizes, são competências e habilidades do licenciado em Química, em relação à formação geral:

- Possuir conhecimento sólido e abrangente na área de atuação, com domínio das técnicas básicas de utilização de laboratórios, bem como dos procedimentos necessários de primeiros socorros, nos casos dos acidentes mais comuns em laboratórios de Química:
- Possuir capacidade crítica para analisar de maneira conveniente os seus próprios conhecimentos; assimilar os novos conhecimentos científicos e/ou educacionais e refletir sobre o comportamento ético que a sociedade espera de sua atuação e de suas relações com o contexto cultural, socioeconômico e político;

- Identificar os aspectos filosóficos e sociais que definem a realidade educacional;
- Identificar o processo de ensino/aprendizagem como processo humano em construção;
- Ter uma visão crítica com relação ao papel social da Ciência e à sua natureza epistemológica, compreendendo o processo histórico-social de sua construção;
- Saber trabalhar em equipe e ter uma boa compreensão das diversas etapas que compõem uma pesquisa educacional;
- Ter interesse no autoaperfeiçoamento contínuo, curiosidade e capacidade para estudos extracurriculares individuais ou em grupo, espírito investigativo, criatividade e iniciativa na busca de soluções para questões individuais e coletivas relacionadas com o ensino de Química, bem como para acompanhar as rápidas mudanças tecnológicas oferecidas pela interdisciplinaridade, como forma de garantir a qualidade do ensino de Química;
- Ter formação humanística que permita exercer plenamente sua cidadania e, enquanto profissional, respeitar o direito à vida e ao bem-estar dos cidadãos;
- Ter habilidades que o capacitem para a preparação e desenvolvimento de recursos didáticos e instrucionais relativos à sua prática e avaliação da qualidade do material disponível no mercado, além de ser preparado para atuar como pesquisador no ensino de Química.

Além disso, em relação à formação específica do Licenciado em Química:

- Compreender os conceitos, leis e princípios da Química;
- Conhecer as propriedades físicas e químicas principais dos elementos e compostos, que possibilitem entender e prever o seu comportamento físico-químico, aspectos de reatividade, mecanismos e estabilidade;
- Acompanhar e compreender os avanços científico-tecnológicos e educacionais;
- Reconhecer a Química como uma construção humana e compreender os aspectos históricos de sua produção e suas relações com o contexto cultural, socioeconômico e político.

Já em relação à busca por informação, comunicação e expressão:

- Saber identificar e buscar nas fontes de informações relevantes para a Química, inclusive as disponíveis nas modalidades eletrônica e remota, que possibilitem a contínua atualização técnica, científica, humanística e pedagógica;
- Ler, compreender e interpretar os textos científico-tecnológicos em idioma pátrio e estrangeiro (especialmente inglês e/ou espanhol);
- Saber interpretar e utilizar as diferentes formas de representação (tabelas, gráficos, símbolos, expressões etc.);
- Saber redigir e avaliar criticamente os materiais didáticos, como livros, apostilas, "kits", modelos, programas computacionais e materiais alternativos;
- Demonstrar bom relacionamento interpessoal e saber comunicar corretamente os projetos e resultados de pesquisa na linguagem educacional, oral e escrita (textos, relatórios, pareceres, pôsteres, internet etc.) em idioma pátrio.

Com relação ao ensino de Química:

- Refletir de forma crítica sobre a sua prática em sala de aula, identificando problemas de ensino/aprendizagem;
- Compreender e avaliar criticamente os aspectos sociais, tecnológicos, ambientais, políticos e éticos relacionados às aplicações da Química na sociedade;
- Saber trabalhar em laboratório e saber usar a experimentação em Química como recurso didático:
- Possuir conhecimentos básicos de TDICs (Tecnologias Digitais da Informação e Comunicação e sua utilização em Ensino de Química;
- Possuir conhecimento dos procedimentos e normas de segurança no trabalho;
- Conhecer teorias psicopedagógicas que fundamentam o processo de ensinoaprendizagem, bem como os princípios de planejamento educacional;
- Conhecer os fundamentos, a natureza e as principais pesquisas de ensino de Química;
- Conhecer e vivenciar projetos e propostas curriculares de ensino de Química;
- Ter atitude favorável à incorporação, na sua prática, dos resultados da pesquisa educacional em Ensino de Química, visando solucionar os problemas relacionados ao ensino/aprendizagem.

Com relação à profissão:

- Ter consciência da importância social da profissão como possibilidade de desenvolvimento social e coletivo;
- Ter capacidade de disseminar e difundir e/ou utilizar o conhecimento relevante para a comunidade:
- Atuar no magistério, em nível de ensino médio, de acordo com a legislação específica, utilizando metodologia de ensino variada, contribuir para o desenvolvimento intelectual dos estudantes e para despertar o interesse científico em adolescentes; organizar e usar laboratórios de Química; escrever e analisar criticamente livros didáticos e paradidáticos e indicar bibliografia para o ensino de Química; analisar e elaborar programas para esses níveis de ensino;
- Exercer a sua profissão com espírito dinâmico, criativo, na busca de novas alternativas educacionais, enfrentando como desafio as dificuldades do magistério;
- Conhecer criticamente os problemas educacionais brasileiros;
- Identificar no contexto da realidade escolar os fatores determinantes no processo educativo, tais como o contexto socioeconômico, política educacional, administração escolar e fatores específicos do processo de ensino-aprendizagem de Química;
- Assumir conscientemente a tarefa educativa, cumprindo o papel social de preparar os alunos para o exercício consciente da cidadania;
- Desempenhar outras atividades na sociedade, para cujo sucesso uma sólida formação universitária seja um fator importante.

METODOLOGIA:

O curso de Química Licenciatura apresenta atividades básicas, complementares e de extensão como componentes curriculares, em acordo com as resoluções específicas do CEPE e do COU, citadas na seção II, sobre a Legislação dos cursos de graduação da Unioeste.

O curso é constituído por componentes curriculares de caráter teórico, experimental e prático, os quais são trabalhados separadamente apenas quanto à sua concepção na estrutura curricular, porém em caráter formador complexo. A separação das atividades experimentais em componentes curriculares específicos deve-se à maior versatilidade

proporcionada à estrutura curricular e à melhor evolução dos acadêmicos no decorrer do curso, com maior aproveitamento dos recursos.

Os componentes curriculares exclusivamente experimentais deverão ser presenciais também àqueles estudantes que já os cursaram e não obtiveram aprovação por rendimento, de acordo com Regulamento próprio do curso de Química Licenciatura, conforme prevê o Regimento Geral da Unioeste (Resolução nº 028/2003-COU, em seu artigo 105, parágrafo 3º). Além dos componentes curriculares experimentais, incluem-se nesse regulamento, os componentes curriculares teóricos de Fundamentos da Química I (QLQ 01) e Fundamentos da Química II (QLQ 03).

Os componentes curriculares específicos da área pedagógica são momentos, nos quais o licenciando precisa ter acesso às propostas de ensino, vivenciar e refletir sobre metodologias, conhecer e analisar propostas e materiais instrucionais, de modo que o acadêmico possa ter condições de elaborar, implementar e avaliar futuramente seus próprios materiais. Sendo assim, o curso deverá utilizar-se de metodologias e materiais diversificados durante as aulas, independentemente da área ou conteúdo a ser desenvolvido. Neste sentido, as atividades acadêmicas de extensão relacionadas a estas componentes, complementam esta formação plural tornando o acadêmico-futuro professorparte do seu processo de formação e atuando como elo entre a Universidade e a comunidade.

A formação do professor é um processo contínuo que tem na Licenciatura um espaço/tempo importante, desde que ela propicie a efetiva reflexão acerca do fazer pedagógico, a partir do conhecimento do licenciado e de sua interação com a realidade escolar².

Os acadêmicos deverão também realizar Prática de Ensino e Estágio Supervisionado obrigatório em unidades concedentes que tenham relação direta com a área de Ensino de Química, conforme Regulamento das Diretrizes Gerais para os Estágios Supervisionados dos Cursos de Graduação da Universidade Estadual do Oeste do Paraná (Resolução 250/2021-CEPE) e conforme regulamento de Estágio Supervisionado do curso de Química na modalidade Licenciatura (Resolução nº 215/2019-CEPE).

Também é obrigatório o desenvolvimento e apresentação de um Trabalho de Conclusão de Curso (Monografia de Graduação), que pode ser de natureza puramente

bibliográfica ou investigativa, conforme regulamento da Monografia de Graduação do curso Resolução nº 208/2018-CEPE.

O envolvimento dos acadêmicos com atividades de ensino, pesquisa e de extensão dar-se-á a partir de projetos específicos, em programas institucionais de Iniciação Científica (PIBIC) e Iniciação à Docência (PIBID), Projetos de Ensino e Projetos de Extensão, remunerados ou voluntários, os quais também poderão ser considerados Atividades Acadêmicas Complementares, conforme regulamento próprio do curso excluindo-se as ações próprias referentes a curricularização da extensão.

Os projetos de Monitoria Acadêmica têm como objetivo principal auxiliar os acadêmicos na apreensão dos conhecimentos e desta forma minimizar os índices de reprovação em componentes curriculares das áreas da Matemática e Física. Mas também objetivam oportunizar ao acadêmico um envolvimento maior com conceitos que fazem parte da formação do futuro profissional da Química. Os projetos de Monitoria Acadêmica serão desenvolvidos nos componentes curriculares de caráter Teórico ou Experimental da grade curricular do curso, nestes o acadêmico monitor deverá desempenhar as atividades registradas no projeto de monitoria, respeitando a carga horário estabelecida neste projeto, de acordo com a orientação recebida do professor responsável.

Em relação à formação complementar, os acadêmicos poderão cursar componentes curriculares de outros cursos, preferencialmente, da Unioeste, como *Formação Independente*, desde que limitadas a um número máximo de 6 (seis); e que haja compatibilidade de horários e existência de vaga, conforme estabelece a Resolução nº 219/2006-CEPE.

AVALIAÇÃO:

O processo de avaliação em qualquer um de seus níveis deve ser contínuo, permanente, dinâmico e independente.

Com relação ao processo ensino e de aprendizagem, segundo a Lei de Diretrizes e Bases, para que a avaliação tenha função relevante e significativa na prática escolar, é imprescindível entendê-la como instrumento de análise permanente do processo pedagógico que revela ao professor em que medida os estudantes estão ou não se apropriando dos conteúdos trabalhados. Desse modo a avaliação tem função diagnóstica, pois o professor vai acompanhando e avaliando os progressos e dificuldades dos

estudantes, levando-os a novas ações e ajustes no planejamento, respeitando os limites e as especificidades de cada estudante.

FORMAS E ORGANIZAÇÃO DO PROCESSO DE AUTOVALIAÇÃO

A autoavaliação do curso deverá analisar o corpo docente, o corpo técnico administrativo, bem como a infraestrutura que dá suporte ao curso. Nesta análise, deverão ser utilizados dados obtidos junto à coordenação do curso, ao Centro afeto e a outros órgãos da universidade, além de questionários de consulta aos acadêmicos e professores. Nos questionários, três dimensões deverão ser analisadas: o perfil do estudante ingressante, os componentes curriculares (processo de ensino e aprendizagem e qualificação e adequação do corpo docente) e a infraestrutura do curso. O Colegiado do Curso entende por autoavaliação a busca de aferição dos seguintes aspectos:

- Em relação aos acadêmicos:
 - A forma de mensurar a construção dos conhecimentos atingidos nas diferentes atividades acadêmicas;
 - O nível de satisfação com relação às condições estruturais, materiais e pedagógicas disponibilizadas;
 - O grau de desenvoltura atingido quanto ao desempenho das habilidades profissionais, bem como o gosto pela continuidade de sua formação.
- II. Em relação à proposta pedagógica:
 - a) O nível de articulação entre as atividades teóricas e experimentais;
 - b) A garantia de atualização, pertinência e relevância dos diferentes componentes curriculares:
 - A assiduidade e o grau de envolvimento da comunidade acadêmica com a proposta pedagógica;
 - d) O atendimento de uma demanda regional sem perder de vista a perspectiva nacional, fazendo uma ligação coesa entre o particular e o geral, visando à inclusão tanto dos acadêmicos quanto dos docentes na realidade nacional.
- III. Em relação ao processo de ensino e de aprendizagem:
 - a) A adequação dos conteúdos dos componentes curriculares ao perfil do egresso;

- b) A metodologia de ensino (aulas práticas, aulas laboratoriais, visitas técnicas, etc.);
- c) A metodologia de avaliação;
- d) O grau de conhecimento do assunto pelo professor;
- e) O relacionamento entre aluno e professor;
- f) A assiduidade e pontualidade do professor;
- g) A qualificação do corpo docente.

IV. Em relação à instituição:

- a) As reais condições físicas e materiais para o desenvolvimento da proposta pedagógica;
- b) A satisfação da comunidade interna e externa com as atividades desenvolvidas;
- O grau de aproveitamento dos recursos financeiros, materiais e humanos envolvidos;
- d) O nível de liberdade de ações e de opiniões dentro de uma realidade democrática, onde todas as opiniões sejam ouvidas e respeitadas;
- e) O nível de participação dos interessados nas decisões e no planejamento de ações a serem implementadas;
- f) A existência de laboratórios nas principais áreas de conhecimento relacionadas ao perfil do curso;
- g) A frequência de ocorrência de aulas práticas laboratoriais e/ou visitas técnicas;
- A existência de salas de aula adequadas e com dimensões e mobiliário apropriado ao ensino de Química;
- i) A existência de biblioteca com dimensões e mobiliário apropriado ao ensino de Química;
- j) O acervo de livros e periódicos atualizado e em quantidade razoável;
- O corpo técnico de apoio em quantidade adequada para utilização de todos os recursos de infraestrutura.
- V. Em relação à qualificação e adequação do corpo docente:
 - A adequação do número de professores que compõem o corpo docente do curso;
 - A carga horária de cada professor dedicada ao ensino, pesquisa e extensão;

- c) Adequação da formação de cada professor ao componente curricular que leciona;
- d) O número de professores com dedicação exclusiva;
- e) A quantidade de professores efetivos e colaboradores.

É desejável que o processo de autoavaliação seja realizado a cada ano letivo. As informações obtidas nesse processo deverão ser processadas pelo Núcleo Docente Estruturante e pelo Colegiado de Curso, de forma a elaborar um planejamento que vise à correção das principais deficiências observadas e a melhoria contínua do curso. Tem papel importante nessa avaliação toda a comunidade universitária envolvida, além da Comissão Central Permanente de Avaliação Institucional - CCPA da UNIOESTE.

A autoavaliação de todos os aspectos pertinentes ao curso, descrita anteriormente, deverá ser organizada e realizada ao final de cada ano letivo, a partir do ano de 2015, segundo os critérios e instrumentos estabelecidos pelo Núcleo Docente Estruturante – NDE. As atribuições do NDE são definidas pela Resolução nº 317/2011-CEPE, entre as quais, zelar pela integração curricular interdisciplinar do curso, contribuir para a consolidação do perfil profissional do egresso, zelar pelo cumprimento das Diretrizes Curriculares Nacionais, propor instrumentos de autoavaliação do curso e reformular o PPP, quando for o caso.

Os resultados dessa avaliação, realizada na forma de um questionário disponível aos estudantes e professores, sobre a estrutura curricular do curso, o desempenho dos docentes, a acessibilidade e a infraestrutura física e administrativa, serão divulgados a critério do Colegiado do Curso. Os resultados conduzirão as discussões, no âmbito do NDE e Colegiado do Curso, no sentido de propor melhorias e correções de inconformidades

FORMAS DE AVALIAÇÃO DO PROCESSO DE ENSINO E APRENDIZAGEM:

A avaliação do processo de ensino e aprendizagem deverá ser feita de forma contínua e distribuída ao longo de todo o período de vigência do componente curricular, devendo constituir-se de avaliações múltiplas, de caráter documental, com regras e critérios claros previamente estabelecidos e informados aos acadêmicos no plano de ensino, conforme a Resolução nº 282/2006-CEPE.

Os componentes curriculares experimentais deverão realizar avaliações que considerem tanto os conteúdos teóricos quanto os experimentais inerentes às atividades práticas realizadas, a critério do docente. Além das avaliações convencionais (provas), também poderão ser exigidos relatórios, laudos, resenhas, exposições orais, ou qualquer

outro tipo de trabalho a critério do docente, desde que previamente estabelecido no plano de ensino.

A avaliação do processo de ensino e de aprendizagem pelo Colegiado do Curso darse-á periodicamente, por meio de mecanismos externos como o Exame Nacional de Desempenho de Estudantes – ENADE e processos avaliativos estaduais (Secretaria de Ciência, Tecnologia e Ensino Superior - SETI/PR) ou nacionais (Sistema Nacional de Avaliação da Educação Superior - SINAES, realizado pelo INEP). Além disso, cabe ao Colegiado do Curso zelar pelo cumprimento de cada plano de ensino.

IV – ESTRUTURA CURRICULAR - CURRÍCULO PLENO DESDOBRAMENTO DAS ÁREAS/MATÉRIAS EM DISCIPLINAS

Área/Matéria	Código	Disciplinas	C/H
1. De Formação Geral			
_	1	Matrizes e Geometria Analítica	68
Matemática	2	Cálculo I	68
	3	Cálculo II	68
Física	4	Física Geral I	68
	5	Física Geral III	68
	6	Física Experimental	68
Química Geral	7	Fundamentos da Química I	68
	8	Laboratório de Fundamentos da Química I	68
	9	Fundamentos da Química II	68
	10	Laboratório de Fundamentos da	34
	10	Química II	34
Química Analítica	11	Química Analítica	68
	12	Métodos Eletroanalíticos	34
	13	Métodos Cromatográficos	34
	14	Métodos Espectrofotométricos	34
	15	Laboratório de Química Analítica	51
	16	Laboratório de Química Analítica Instrumental	51
	17	Química Inorgânica I	68
Química Inorgânica	18	Laboratório de Química Inorgânica I	51
	19	Química Inorgânica II	68
	20	Laboratório de Química Inorgânica II	68
	21	Química Orgânica I	68
Química Orgânica	22	Laboratório de Química Orgânica I	34
	23	Química Orgânica II	68
	24	Laboratório de Química Orgânica II	68
	25	Análise Orgânica Instrumental	51
Físico-Química	26	Físico-Química I	68

	27	Físico-Química II	68
	28	Físico-Química III	68
	29	Laboratório de Físico-Química	68
Complementares	30	Princípios de Bioquímica	51
	31	Optativa	51
Subtotal			1836
2. De Fo	rmação D	iferenciada	
Forma o perfil específico de cada curso	32	Didática das Ciências	34
	33	Didática da Química	34
	34	Psicologia da Educação I	34
	35	Psicologia da Educação II	34
	36	Metodologia para o Ensino de Química	68
	37	Instrumentação para o Ensino de Química	68
	38	Pesquisa em Educação	34
	39	Políticas Públicas e Gestão Educacional	34
	40	Libras	68
	41	História e Filosofia para o Ensino de Química	34
	42	Química e Educação Ambiental	34
	43	Ensino de Ciências e Formação Docente	34
	44	Química e Educação Formal	34
Subtotal		•	544
3. Estágio Supervisionado	45	Prática de Ensino e Estágio Supervisionado I	200
	46	Prática de Ensino e Estágio Supervisionado II	200
Subtotal			400
4. Trabalho de Conclusão de Curso			
	47	Monografia de Graduação	34
Subtotal		_	34
 Atividades Acadêmicas Complementares (mínimo de 5%) 		Atividades Científico-Culturais	
Subtotal			200
	48 49	Tecnologias Computacionais para as Ciências	34
6. Extensão Universitária	50	Português Instrumental	34
(mínimo de 10%) como disciplina	50 51	Tecnologia, Inovação e Sustentabilidade I	34
	52	Tecnologia, Inovação e Sustentabilidade II	34

	Química na Comunidade	51
Subtotal		187
7. Extensão Universitária (mínimo de 10%) como parte de disciplina	Química e Educação Ambiental (dentro da formação diferenciada)	34
	Química e Educação Formal (dentro da formação diferenciada)	34
	Prática de Ensino e Estágio Supervisionado I (parte de disciplina)	34
	Prática de Ensino e Estágio Supervisionado II (parte de disciplina)	14
	Monografia (parte de disciplina)	17
	Subtotal	133
TOTAL DO CURSO		3201

Observações:

- 1. A carga horária total do curso (3201 h) leva em consideração a carga horária de formação geral e específica (2200 h); das Práticas como Componentes Curriculares (400 h); do Estágio Supervisionado (400h); das Atividades Acadêmicas Complementares (200 h) e de Extensão Universitária(320h); com os 10% (dez por cento) exigidos do total de créditos curriculares para a graduação em conformidade com a Lei nº13.005 de 25 de junho de 2014, PNE 2014-2024, Resolução CNE/CES nº 7, de 18 de dezembro de 2018, Parecer CNE/CES nº 608/2018, homologado pela Portaria MEC nº 1.350, de quatorze de dezembro de 2014, parecer CNE/CES nº 498, de 6 de agosto de 2020, DOU de 28, de dezembro, de 2020 e de acordo com à Resolução nº 02 de dezembro de 2019; e com fundamento no Parecer CNE/CP nº 22, de 07 de novembro de 2019, homologada pela Portaria MEC nº 2.167, de 19 de dezembro de 2019, publicada no DOU de 20 de dezembro de 2019; Resolução nº 194/2021-CEPE da Universidade Estadual do Oeste do Paraná.
- 2. Tendo em vista o ingresso de alunos no curso durante a vigência do primeiro semestre, decorrente de outras chamadas do vestibular e do SISU, será realizado um acompanhamento desses acadêmicos nas disciplinas do primeiro semestre do curso, por meio dos seguintes procedimentos: a. preferência na proposição de projetos de monitoria para os componentes curriculares do 1º e 2º semestres; b. estudos dirigidos dos alunos em contraturno, acompanhados pelo monitor do componente curricular; c. datas diferenciadas para a realização das avaliações desses alunos; d. possibilidade de prorrogação do calendário para os componentes curriculares do primeiro semestre.

- 3. As atividades extraclasses, realizadas durante a graduação, correspondem a estudos em biblioteca e em laboratório, preparação de seminários, elaboração de trabalhos e relatórios, frequência em monitorias, trabalhos individuais ou em grupo, projetos técnicos e extensionista entre outros similares realizados na Instituição de ensino, em atendimento às DCN's (Resolução CNE/CES nº 03/2007 e Parecer CNE nº 261/2007; Resolução nº 194/2021-CEPE).
- 4. De acordo com as Diretrizes Curriculares Nacionais para a Formação Inicial e Continuada dos Profissionais do Magistério da Educação Básica (Resolução nº 02 de dezembro de 2019; e com fundamento no Parecer CNE/CP nº 22, de 07 de novembro de 2019, homologada pela Portaria MEC nº 2.167, de 19 de dezembro de 2019, publicada no DOU de 20 de dezembro de 2019), o currículo deve ser organizado em 3 núcleos:
- 4.1. Núcleo de estudos de formação geral: Este núcleo compreende as seguintes disciplinas: Matrizes e Geometria Analítica, Cálculo I e II, Física Geral I e III, Física Experimental, Fundamentos da Química I e II, Laboratório de Fundamentos da Química I e II, Química Analítica, Laboratório de Química Analítica, Laboratório de Química Analítica Instrumental, Química Inorgânica I e II, Laboratório de Química Orgânica I e II, Análise Orgânica Instrumental, Físico-Química I, II e III, Laboratório de Físico-Química.
- 4.2. Núcleo dos conteúdos específicos e pedagógicos. Este núcleo compreende as disciplinas: Didática das Ciências e Didática da Química, Psicologia da Educação I e II, Metodologia para o Ensino de Química, Instrumentação para o Ensino de Química, Pesquisa em Educação, Políticas Públicas e Gestão Educacional, Libras, História e Filosofia para o ensino de Química, Química e Educação Ambiental, Ensino de Ciências e Formação Docente, Química e Educação Formal;
- 4.3. Núcleo de Estudos integradores para enriquecimento curricular: Este núcleo compreende a participação dos acadêmicos em projetos de ensino, projetos de monitoria, projetos de iniciação científica e projetos de extensão, dentre outros.
- 4.4. Núcleo dos conteúdos com carácter extensionista. Este núcleo compreende as disciplinas: Tecnologias Computacionais para as Ciências, Português Instrumental, Tecnologia, Inovação e Sustentabilidade I, Tecnologia, Inovação e Sustentabilidade II e

os projetos e semanas acadêmicas que trabalharam a extensão dentro das demais disciplinas do curso

V - DISTRIBUIÇÃO ANUAL DAS DISCIPLINAS

					Carga-		ia		Forma de
Cádina	Discipling				Ho	ras	ı	l	Oferta
Código	Disciplina	Pré- requisito Código	Total	Teórica	Prática	APS	APCC	EXT	1º ou 2º Sem/ Anual
		1º a	no						
1	Fundamentos da Química I		68	68					1º Sem.
2	Laboratório de Fundamentos da Química I		68		68				1º Sem.
3	Didática das Ciências		34	34			16		1º Sem.
4	Libras		68	68					1º Sem.
5	Pesquisa em Educação		34	34			34		1º Sem.
6	Políticas Públicas e Gestão Educacional		34	34					1º Sem.
7	Português Instrumental		34	34				34	1º Sem.
Subtotal			340	272	68		50	34	
8	Cálculo I		68	68					2º Sem.
9	Didática da Química		34	34			16		2º Sem.
10	Física Geral I		68	68					2º Sem
11	Fundamentos da Química II		68	68					2º Sem.
12	Laboratório de Fundamentos da Química II		34		34				2º Sem.
13	Psicologia da Educação I		34	34					2º Sem.
14	Tecnologias Computacionais para as Ciências		34	34				34	2º Sem.
Subtotal			340	306	34	0	16	34	
		2	o ano						
15	Cálculo II		68	68					1º Sem.
16	Física Geral III		68	68					1º Sem.
17	Psicologia da Educação II		34	34					1º Sem.
18	Química Inorgânica I		68	68			8		1º Sem.
19	Tecnologia, Inovação e Sustentabilidade I		34	34				34	1º Sem.
20	Química Analítica		68	68			8		1º Sem.
Subtotal			340	340	0	0	16	34	
21	Laboratório de Química Analítica		51		51				2º Sem.
22	Física Experimental		68	32	36				2º Sem.
23	Laboratório de Química Inorgânica I		51		51				2º Sem.

	Matrizas a Coometria						1	
24	Matrizes e Geometria Analítica	68	68					2º Sem.
25	Metodologia para o Ensino de Química	68	68			68		2º Sem.
26	Tecnologia, Inovação e Sustentabilidade II	34	34				34	2º Sem.
Subtotal		340	202	138	0	68	34	
		3º an				II.	ı	
27	Físico-Química I	68	68			8		1º Sem.
28	História e Filosofia para o Ensino de Química	34	34			34		1º Sem.
29	Instrumentação para o Ensino de Química	68	68			68		1º Sem.
30	Laboratório de Química Orgânica I	34		34				1º Sem.
31	Prática de Ensino e Estágio Supervisionado I	200		98			34	Anual
32	Química Orgânica I	68	68			8		1º Sem.
	Subtotal	472	340	132	0	118	34	
33	Físico-Química II	68	68					2º Sem.
34	Laboratório de Química Orgânica II	68		68				2º Sem.
35	Métodos Espectrofotométricos	34	34					
36	Química Inorgânica II	68	68					2º Sem.
37	Química Orgânica II	68	68					2º Sem.
Subtotal		306	238	68	0	34	0	
		4º an)					
38	Ensino de Ciências e Formação Docente	34	34			34		1º Sem.
39	Físico-Química III	68	68					1º Sem.
40	Laboratório de Química Inorgânica II	68		68				1º Sem.
41	Métodos Eletroanalíticos	34	34					1º Sem.
42	Métodos Cromatográficos	34	34					1º Sem.
43	Prática de Ensino e Estágio Supervisionado II	200	68	132			14	Anual
44	Química e Educação Ambiental	34	34			34	34	1º Sem.
45	Química na Comunidade	51	17	34			51	1º Sem.
Subtotal		523	289	234	0	68	99	
46	Análise Orgânica Instrumental	51	51					2º Sem.
47	Laboratório de Físico- Química	68		68				2º Sem.
48	Laboratório de Química Analítica Instrumental	51		51				2º Sem.

49	Monografia de Graduação	34		34		30	17	Anual
50	Optativa	51	51					2º Sem.
51	Princípios de Bioquímica	51	51					2º Sem.
52	Química e Educação Formal	34	34			34	34	2º Sem.
	Subtotal	340	187	153		64	51	
	TOTAL DE DISCIPLINAS	3001	2174	827	-	400	320	
	Atividades Acadêmicas	200						
	Complementares	200						
	Extensão Universitária: em	320						
	disciplina (Química e Educação	320						
	Formal, Educação Ambiental,							
	Português, Tecnologias Computacionais para as Ciências,							
	Tecnologia, Inovação e							
	Sustentabilidade) ou carga horária							
	parcial de disciplina (estágio 1,							
	estágio 2, monografia)							
	Subtotal							
	TOTAL DO CURSO	3201	2174	827	-	400	320	

Observações:

- a) No lugar do CÓDIGO da disciplina utilizar numeração sequencial (a DAA codificará no sistema);
- b) AP Atividade ou aula Prática de laboratório e de campo;
- c) APS Aula Prática Supervisionada desenvolvida em laboratórios ou espaços que necessitam de supervisão direta do docente para o desenvolvimento da disciplina, não se aplica aos estágios;
- d) APCC Prática como Componente Curricular desenvolvida nas licenciaturas como metodologias de ensino explicitadas no Plano de Ensino. Não se aplica na tabela acima a somatória entre carga-horária teórica e prática;
- e) A distribuição da carga horária das atividades de extensão deve estar assegurada em todas as séries do curso ou concentradas em determinadas séries de acordo com o perfil e processo de formação previsto no PPP do curso. Não se aplica, na tabela acima, a somatória ou subtração da carga horária de extensão em relação à carga-horária teórica e/ou prática das disciplinas, apenas indica-se a carga horária a ser realizada em atividades de extensão.

30

Reitoria - CNPJ 78.680.337/0001-84 - www.unioeste.br Fone: +55 (45) 3220-3000 | Rua Universitária, 1619 Jardim Universitário | CEP 85819-110 | Cascavel/PR | Brasil

VI – CARGA-HORÁRIA DO CURSO COM DESDOBRAMENTO DE TURMAS

			C/I	H TEÓRIO	CA		С	/H PRÁT	ICA		TCC ES	TÁGIO	
DISCIPLINA	Ano	C/H Total	C/H Teórica	*A/D	Total	C/H Prática	Nº de Grupos	Subtotal	*A/D Prática	Total	Nº de alunos	Total	C/H Total de Ensino
	Período	1	2	3	4=2+3	5	6	7=5 x 6	8	9=7+ 8	10	11	12=4+9+11
					1º aı	no	•			•			
Fundamentos da Química I	10	68	68	68	136								136
Laboratório de Fundamentos da Química I	1º	68	-	1	1	68	3	204	51	255			255
Didática das Ciências	10	34	34	34	68								68
Libras	10	68	68	68	136								136
Pesquisa em Educação	10	34	34	34	68								68
Políticas Públicas e Gestão Educacional	10	34	34	34	68								68
Português Instrumental	10	34	34	34	68								68
Subtotal		340	272	272	544	68		204		255			799
Cálculo I	20	68	68	68	136								136
Didática da Química	2º	34	34	34	68								68
Física Geral I	20	68	68	68	136								136
Fundamentos da Química II	2º	68	68	68	136								136
Laboratório de Fundamentos da Química II	2 º	34	-	-	-	34	3	102	25,5	127,5	-	-	127,5
Psicologia da Educação I	20	34	34	34	68								68
Tecnologias Computacionais para as Ciências	2 º	34	34	34	68								68
Subtotal		340	306	306	612	34	6	102	76,5	127,5			739,5
Total													1538,50
	<u> </u>			<u> </u>	2º aı	no	1	T	1		1	T	
Cálculo II	10	68	68	68	136								136

31

Física Geral III	1º	68	68	68	136								136
Psicologia da Educação II	10	34	34	34	68								68
Química Inorgânica I	10	68	68	68	136								136
Tecnologia, Inovação e Sustentabilidade I	1º	34	34	34	68								68
Química Analítica	1º	68	68	68	136								136
Subtotal		340	340	340	680								680
Laboratório de Química Analítica	2º	51				51	3	153	51	204			204
Física Experimental	2 º	68	32	32	64	36	3	108	27	135			199
Laboratório de Química Inorgânica I	2º	51				51	3	153	51	204			204
Matrizes e Geometria Analítica	2º	68	68	68	136								136
Metodologia para o Ensino de Química	20	68	68	68	136								136
Tecnologia, Inovação e Sustentabilidade II	20	34	34	34	68								68
Subtotal		340	202	202	404	138	9	414	138	552			956
Total													1627
	1		1	T	3º a	no		T			T		
Físico-Química I	10	68	68	68	136								136
História e Filosofia para o Ensino de Química	10	34	34	34	68								68
Instrumentação para o Ensino de Química	10	68	68	68	136								136
Laboratório de Química Orgânica I	1º	34				34	3	102	25,5	127,5			127,5
Prática de Ensino e Estágio Supervisionado I	Anual	200								272	36	1530	1802

32

Química Orgânica I	1º	68	68	68	136								136
Subtotal		472	238	238	476	34		102	25,5	399,5			2405,5
Físico-Química II	2 º	68	68	68	136								136
Laboratório de Química Orgânica II	2 º	68				68	3	204	51	255			255
Métodos espectrofotométricos	2 º	34	34	34	68								68
Química Inorgânica II	2 º	68	68	68	136								136
Química Orgânica II	2º	68	68	68	136								136
Subtotal		306	238	238	476	68							731
Total													3136,5
					4º aı	10			,				
Ensino de Ciências e Formação Docente	1º	34	34	34	68								68
Físico-Química III	1º	68	68	68	136								136
Laboratório de Química Inorgânica II	1º	68				68	3	204	51	255			255
Métodos Eletroanalíticos	1º	34	34	34	68								68
Métodos Cromatográficos	1º	34	34	34	68								68
Prática de Ensino e Estágio Supervisionado II	Anual	200	68			132				272	36	1530	1802
Química e Educação Ambiental	10	34	34	34	68								68
Química na Comunidade	10	51	17	17	34	34	3	102	25,5	127,5			161,5
Subtotal		523	289	289	578	234							2625,5
Análise Orgânica Instrumental	2 º	51	51	51	102								102
Laboratório de Físico-Química	2º	68				68	3	204	51	255			255
Laboratório de Química Analítica Instrumental	2º	51				51	3	153	38,25	191,25			191,25
Monografia de Graduação	2 º	34				34				272	36	1530	1802

33

Optativa	2º	51	51	51	102					102
Princípios de Bioquímica	2º	51	51	51	102					102
Química e Educação Formal	2º	34	34	34	68					68
Subtotal I		340	187	187	374	153				2635
	TOTAL									5248,75
Total do Final do	Curso									11.550,75

Observações:

- 1. Em relação à Carga-horária de A/D (Apoio Didático), seguir a Resolução que aprova critérios para a elaboração e a determinação do Índice de Atividades de Centro IAC.
- 2. Caso haja necessidade de aumento de turmas ocasionadas por reprovação, conforme limite máximo de acadêmicos por grupo, prever desdobramento temporário.

VII - QUADRO DE EQUIVALÊNCIA DO CURSO

CURRÍCULO EM VIGOR CURRÍCULO PROPOSTO Disciplina C/H **Disciplina** C/H Matemática Básica 34 Cálculo I 68 68 Cálculo Diferencial e Integral I Cálculo Diferencial e Integral II 68 Cálculo II 68 Matrizes e Geometria Analítica 68 Matrizes e Geometria Analítica 68 34 Álgebra Linear Física Geral I 68 Física Geral I 68 68 Física Experimental Física Experimental 68 Física Geral II 68 Física Geral III 68 Física Geral III 68 Fundamentos da Química I 68 Fundamentos da Química I 68 68 68 Fundamentos da Química II Laboratório de Fundamentos da Química I Laboratório de Fundamentos da Química I 68 68 Fundamentos da Química II 34 Laboratório de Fundamentos da Química II 34 Laboratório de Fundamentos da Química II 68 Química Analítica 34 Métodos espectrofotométricos 102 Química Analítica Métodos eletroanalíticos 34 Métodos cromatográficos 34 Laboratório de Química Analítica 51 Laboratório de Química Analítica 68 Química Analítica Instrumental 68 Laboratório de Química Analítica Instrumental 51 68 Química Inorgânica I 68 Química Inorgânica I 68 68 Química Inorgânica II Química Inorgânica II 68 51 Laboratório de Química Inorgânica I Laboratório de Química Inorgânica I 68 68 Laboratório de Química Inorgânica II Laboratório de Química Inorgânica II 68 Química Orgânica I 68 Química Orgânica I

ANEXO DA RESOLUÇÃO Nº 030/2023-CEPE, de 30 de março de 2023.

34

Química Orgânica II	68	Química Orgânica II	68
Laboratório de Química Orgânica I	34	Laboratório de Química Orgânica I	34
Laboratório de Química Orgânica II	68	Laboratório de Química Orgânica II	68
Análise Orgânica Instrumental	68	Análise Orgânica Instrumental	68
Físico-Química I	68	Físico-Química I	68
Físico-Química II	68	Físico-Química II	68
Físico-Química III	68	Físico-Química III	68
Laboratório de Físico-Química	68	Laboratório de Físico-Química	68
Princípios de Bioquímica	68	Princípios de Bioquímica	51
Optativa	50	Optativa	51
Psicologia da Educação I	34	Psicologia da Educação I	34
Psicologia da Educação II	34	Psicologia da Educação II	34
Libras	68	Libras	68
Políticas Públicas e Gestão Educacional	34	Políticas Públicas e Gestão Educacional	34
Didática das Ciências I	34	Didática das Ciências	34
Didática das Ciências II	34	Didática da Química	34
História e Filosofia para o Ensino de Química	34	História e Filosofia para o Ensino de Química	34
Metodologia para o Ensino de Química	68	Metodologia para o Ensino de Química	68
Instrumentação para o Ensino de Química	68	Instrumentação para o Ensino de Química	68
Química e Educação Ambiental	34	Química e Educação Ambiental	34
Prática de Ensino e Estágio Supervisionado I	200	Prática de Ensino e Estágio Supervisionado I	200
Prática de Ensino e Estágio Supervisionado II	200	Prática de Ensino e Estágio Supervisionado II	200
Monografia de Graduação	50	Monografia de Graduação	34
Pesquisa em Educação	34	Pesquisa em Educação	34
		Tecnologias Computacionais para as Ciências	34
		Português Instrumental	34

ANEXO DA RESOLUÇÃO Nº 030/2023-CEPE, de 30 de março de 2023.

35

36

Tecnologia, Inovação e Sustentabilidade I	34
Tecnologia, Inovação e Sustentabilidade II	34
Química na Comunidade	51

Observações:

- 1. Devem constar todas as disciplinas do Projeto Político Pedagógico em vigor e do projeto proposto, mesmo as disciplinas que não têm equivalência.
- 2. O quadro de equivalência deve ser utilizado nos casos de retenção e trancamento.
- 3. As disciplinas das áreas básicas (cálculo, física, fundamentos da química, química analítica, química inorgânica, química orgânica e físico-química), cursadas no curso de química bacharelado serão aceitas como disciplinas equivalentes no curso de química licenciatura.
- 4. Também serão consideradas para integralização curricular disciplinas equivalentes cursadas pelos acadêmicos em outros cursos ofertados na Unioeste ou em outras instituições de ensino superior públicas considerando a mobilidade acadêmica.

PARANÁ
GOVERNO DO ESTADO

Reitoria - CNPJ 78.680.337/0001-84 - www.unioeste.br Fone: +55 (45) 3220-3000 | Rua Universitária, 1619 Jardim Universitário | CEP 85819-110 | Cascavel/PR | Brasil

IX - EMENTÁRIO DAS DISCIPLINAS Disciplinas do 1º Ano – 1º Semestre

Disciplina: Fundamentos da Química I								
Carga-horária total	C/H teórica	rica C/H prática C/H APS C/H APCC C/H EXT						
68	68							

Ementa: Introdução aos conceitos fundamentais da Química: conceito de mol, fórmulas e equações químicas, balanceamentos de equações químicas, estequiometria de reação e de solução, unidades de concentração, principais funções químicas, estados de oxidação, reações de oxirredução, estrutura atômica, propriedades periódicas. Ética e humanismo na formação do Licenciado em Química.

Disciplina: Laboratório de Fundamentos da Química I								
Carga-horária total	ga-horária total C/H teórica C/H prática C/H APS C/H APCC C/H EX							
68		68						

Ementa: Técnicas, procedimentos e equipamentos básicos de laboratórios de Química. Normas de segurança: equipamentos de segurança, primeiros socorros e emergências. Normas de elaboração de relatórios. Medidas de massa e volume. Métodos de separação de misturas. Experimentos investigativos explorando o método científico: estrutura da matéria, reações químicas, mudanças de fase, preparo de soluções e padronização. Minimização de impactos ambientais e princípios éticos.

Disciplina: Didática das Ciências								
Carga-horária total	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT			
34	34			16				

Ementa: Estudo dos Fundamentos da Didática e Didática das Ciências, no contexto escolar e suas finalidades, distinguindo os processos de Educação, ensino e aprendizagem em ciências.

Disciplina: Libras							
Carga-horária total	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT		
		-					
68	68						

Ementa: Concepção de Língua Brasileira de sinais – Libras e contribuição na inclusão do surdo. O processo educacional do surdo no Brasil e a trajetória da Libras. Conceitos referentes a "sujeito surdo", "identidade", "cultura", "educação bilíngue", língua(gem)". Aspectos da inter-relação entre professor, aluno surdo e intérprete de Libras. Conceitos e habilidades necessárias para a aquisição da Libras. Noção básica de linguística da Libras. Especificidade gramatical e de estrutura espaço-visual. Noções sobre a comunicação tátil com surdos cegos. Vocabulários básicos da Libras, necessários para uma comunicação visual baseada em regras gramaticais.

Disciplina: Pesquisa em Educação							
Carga-horária total	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT		

34	34		34	

Ementa: O papel da pesquisa no ensino de Química e as abordagens de pesquisa em educação. Imagens da ciência, tipos de conhecimentos, ética na pesquisa, o sistema de produção científica, as dimensões da pesquisa, estratégias e técnicas de pesquisa, etapas do trabalho científico, normas técnicas, leitura de artigos científicos, resumo, resenha, fichamento. Produção de artigo científico.

Disciplina: Políticas Públicas e Gestão Educacional								
Carga-horária C/H teórica C/H prática C/H APS C/H APCC C					C/H EXT			
total		-						
34	34							

Ementa: A educação e suas relações socioeconômico-político-culturais. Análise histórica das legislações brasileiras (LDBEN's instituídas). Função social da escola. Sistema educacional brasileiro: níveis e modalidades de ensino. Inclusão educacional e diversidade: Lei nº 8.069/90, Lei nº 10639/03 e Resolução CNE/CP 01 de 17/06/2004. As Diretrizes Curriculares Nacionais e Estaduais para a Educação Básica. Organização da escola e instâncias colegiadas. Gestão Democrática.

Disciplina: Português Instrumental								
Carga-horária total	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT			
34	34				34			

Ementa: Leitura e produção escrita de vários gêneros textuais. Linguagem coloquial, formal, técnica e científica. Escrita: redação, análise e interpretação de textos. Atividades de inserção do acadêmico na comunidade.

Disciplinas do 1º Ano – 2º Semestre

Disciplina: Cálculo I								
Carga-horária total	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT			
		-						
68	68							

Ementa: Conjuntos numéricos e relação de ordem. Desigualdades. Funções trigonométricas, exponenciais, polinomiais e Logarítmicas. Limites. Funções de uma variável real: continuidade, derivadas e suas e aplicações. Integrais indefinidas e Definidas. Teorema Fundamental do Cálculo e Aplicações.

Disciplina: Didática da Química								
Carga-horária total	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT			
34	34			16				

Ementa: Estudo das relações entre natureza da ciência e o ensino de química, enfatizando os processos de organização e gestão de sala de aula, com foco na interação alunoprofessor, no planejamento de ensino e na avaliação.

Disciplina: Física Geral I

Carga-horária total	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT
68	68				

Ementa: Introdução às grandezas físicas e aos sistemas de unidades. Cinemática unidimensional. Vetores. Cinemática bi e tridimensional. Dinâmica da Partícula - Leis de Newton. Trabalho e energia. Dinâmica de um sistema de partículas: colisões, lei da conservação do momento linear. Dinâmica dos corpos rígidos: cinemática das rotações, torque, lei da conservação do momento angular.

Disciplina: Fundamentos da Química II								
Carga-horária total	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT			
68	68							

Ementa: Introdução aos conceitos fundamentais da Química: ligações químicas, teorias ácido-base, cinética e equilíbrio químico, eletroquímica, química nuclear.

Disciplina: Laboratório de Fundamentos da Química II							
Carga-horária total C/H teórica C/H prática C/H APS C/H APCC C/H EXT							
34		34					

Ementa: Experimentos investigativos explorando o método científico: reações químicas, cálculo estequiométrico, deslocamentos de equilíbrio, solubilidade de sólidos, reatividade dos metais e reações de oxirredução, velocidade das reações, potencial de uma pilha. Minimização de impactos ambientais e princípios éticos.

Disciplina: Psicologia da Educação I							
Carga-horária	C/H teórica	C/H teórica C/H prática C/H APS C/H APCC C/H EXT					
total							
34	34						

Ementa: Estudo da Psicologia e da Psicologia da Educação a partir de seus fundamentos teóricos, epistemológicos e históricos. As contribuições da Psicologia no campo educacional e escolar brasileiro.

Disciplina: Tecnologias Computacionais para as Ciências								
Carga-horária	ga-horária C/H teórica C/H prática C/H APS C/H APCC C/H EXT							
total		-						
34	34				34			

Ementa: Tecnologias computacionais por meio de softwares gratuitos, aplicados na área de química ou física ou matemática. Atividades de inserção do acadêmico na comunidade.

Disciplinas do 2º Ano – 1º Semestre

Disciplina: Cálculo II								
Carga-horária total	I C/H teórica C/H prática C/H APS C/H APCC C/H E							
68	68							

Ementa: Funções reais de várias variáveis reais. Limites e Continuidade de funções de várias variáveis. Derivadas parciais e aplicações. Integrais múltiplas e aplicações.

Disciplina: Física Geral III								
Carga-horária	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT			
total								
68	68							

Ementa: Eletrostática: carga elétrica; força, campo e potencial elétrico; capacitância. Eletrodinâmica: corrente elétrica, propriedades elétricas, circuitos de CC. Magnetismo. Eletromagnetismo: leis de Biot-Savart e de Ampère, força magnética. Indução eletromagnética: lei de Faraday, indutância, transformador.

Disciplina: Psicologia da Educação II								
Carga-horária total	C/H teórica C/H prática C/H APS C/H APCC C/H EXT							
34	34							

Ementa: As relações entre os paradigmas da Psicologia (Comportamentalismo; Psicologia Genética; Psicologia Histórico-Cultural; Psicanálise) e as práticas pedagógicas brasileiras. Contribuições da Psicologia da Educação à formação do educador.

Disciplina: Química Inorgânica I							
Carga-horária total	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT		
68	68			80			

Ementa: Teoria e propriedades atômicas. Teorias das ligações químicas: Teoria da Ligação de Valência e Teoria dos Orbitais Moleculares. Forças químicas. Química dos ácidos e bases Introdução à teoria de grupo.

Disciplina: Tecnologia, Inovação e Sustentabilidade I								
Carga-horária total C/H teórica C/H prática C/H APS C/H APCC C/H EXT								
34	34				34			

Ementa: Influência da Ciência em políticas públicas. Estudos de caso no Brasil. Conceito de sustentabilidade e desenvolvimento sustentável. Tecnologias verdes. Atividades de inserção do acadêmico na comunidade.

Disciplina: Química Analítica								
Carga-horária	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT			
total		-						
68	68			08				

Ementa: Estudo dos equilíbrios Químicos. Hidrólise de sais. Sistemas Tampão. Tratamento sistemático do equilíbrio e balanço de carga e de massa. Força iônica e atividade. Composição fracionaria de espécies. Curvas de titulação.

Universidade Estadual do Oeste do Paraná

Reitoria - CNPJ 78.680.337/0001-84 - www.unioeste.br Fone: +55 (45) 3220-3000 | Rua Universitária, 1619 Jardim Universitário | CEP 85819-110 | Cascavel/PR | Brasil

Disciplinas do 2º Ano - 2º Semestre

Disciplina: Laboratório de Química Analítica							
Carga-horária total C/H teórica C/H prática C/H APS C/H APCC C/H E							
		-					
51		51					

Ementa: Amostragem. Tratamento estatístico dos dados. Estudo dos equilíbrios químicos e os fatores que os afetam. Tampões e pH. Titulações ácido-base, de precipitação, de complexação e de óxido-redução. Gravimetria. Minimização de impactos ambientais

Disciplina: Física Experimental								
Carga-horária	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT			
total								
68	32	36						

Ementa: **Teoria dos erros. Gráficos. Movimento periódico: MHS, oscilações amortecidas e forçadas, pêndulos. Ondas transversais e longitudinais. Óptica geométrica. Óptica física. *** Medições. Queda livre. Força da mola. Colisões. Momento de inércia. Pêndulos. Ondas mecânicas. Ondas estacionárias. Espelhos e lentes. Óptica física. Difração por fenda simples. Eletrostática. Potencial e Campo elétrico. Lei de Ohm. Indução eletromagnética.

^{**} Conteúdo Teórico; ***Conteúdo Prática

Disciplina: Laboratório de Química Inorgânica I							
Carga-horária	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT		
total							
51		51					

Ementa: Experimentos relacionados à química descritiva dos elementos representativos: reatividade ao ar, e em presença de água, acidez e basicidade dos compostos de elementos representativos, síntese, caracterização e aplicação destes compostos. Obtenção de alguns elementos representativos. Minimização de impactos ambientais e princípios éticos.

Disciplina: Matrizes e Geometria Analítica								
Carga-horária	a-horária C/H teórica C/H prática C/H APS C/H APCC C/H EXT							
total		-						
68	68							

Ementa: Matrizes e Determinantes. Sistemas de Coordenadas Cartesianas em R2 e R3, Vetores, Retas, Planos, Distâncias.

Disciplina: Metodologia para o Ensino de Química								
Carga-horária C/H teórica C/H prática C/H APS C/H APCC C/H EXT								
total								
68				68				

Ementa: Estudo de metodologias utilizadas para o desenvolvimento de conceitos químicos na educação básica: contextualização do ensino; ensino por investigação; momentos pedagógicos; abordagem temática; abordagem CTS. A educação formal, informal e nãoformal. Cultura e ensino; conhecimento cotidiano, científico e escolar. Concepções alternativas e obstáculos epistemológicos. O papel dos modelos no ensino de química.

Avaliação e ensino de química: definição e finalidade, elaboração, momentos de avaliar, instrumentos, análise de resultados; relação entre as atividades de ensino e avaliação.

Disciplina: Tecnologia, Inovação e Sustentabilidade II							
Carga-horária total C/H teórica C/H prática C/H APS C/H APCC C/H EXT							
_		-					
34	34				34		
Ementa: Fontes Alte	Ementa: Fontes Alternativas de Energia. Aplicação de Biomateriais e Nanotecnologia.						

Atividades de inserção do acadêmico na comunidade.

Disciplinas do 3º Ano – 1º Semestre

Disciplina: Físico-Química I							
Carga-horária total	otal C/H teórica C/H prática C/H APS C/H APCC C/H EX						
68	68			80			

Ementa: Propriedades dos Gases: leis empíricas dos gases, equação de estado dos gases, teoria cinética dos gases, capacidade calorífica, gases reais. Primeira Lei da Termodinâmica: calor e trabalho, fronteiras sistema-vizinhanças, funções de estado, energia interna e entalpia, capacidade calorífica, calorimetria e lei de Hess, derivadas parciais da 1ª Lei. Segunda Lei da Termodinâmica: máquinas térmicas, conceito de entropia, ciclo de Carnot, espontaneidade e reversibilidade, entropia absoluta e a 3ª Lei, derivadas parciais da 2ª Lei. Energia Livre: desigualdade de Clausius, conceito de energia livre, derivadas parciais de energia livre.

Disciplina: História e Filosofia para o Ensino de Química								
Carga-horária total C/H teórica C/H prática C/H APS C/H APCC C/H EXT								
34	34			34				

Ementa: A construção do conhecimento científico a partir da análise de algumas correntes filosóficas: Popper, Kuhn, Feyerbend e Lakatos. Bachelard e o ensino de Química. A relação entre a História da Ciência e a Filosofia da Ciência e a influência desta relação na produção do conhecimento. Estudos de caso referentes ao estudo e elaboração de alguns conceitos químicos O entendimento do significado da História da Ciência no processo de ensino de Química em sala de aula. A história da ciência nas aulas de Química: possibilidades, propostas de inserção e material didático.

Disciplina: Instrumentação para o Ensino de Química								
Carga-horária total C/H teórica C/H prática C/H APS C/H APCC C/H EX								
		-						
68	68			68				

Ementa: Estudo e análise de recursos e materiais didáticos utilizados para o desenvolvimento de conceitos químicos na educação básica (livro didático e paradidático, audiovisuais, TICs, computador/internet, revistas, jornais, textos, jogos e mapas conceituais). O laboratório de Ciências/Química: formas de laboratório didático, tipos de experimentação, planejamento e implementação de experimentos em sala de aula e no laboratório, a elaboração de roteiros experimentais.

Disciplina: Laboratório de Química Orgânica I								
Carga-horária total C/H teórica C/H prática C/H APS C/H APCC C/H EX								
		-						
34		34						

Ementa: Solubilidade, propriedades ácidas e básicas e seu emprego na separação de misturas de compostos orgânicos. Testes para identificação de grupo funcional. Técnicas de purificação, caracterização e isolamento de compostos orgânicos: Recristalização, Cromatografia, Extração, Destilação simples e fracionada, arraste a vapor. Reações de Oxidação a alcenos. Reações de Substituição Nucleofílica. Minimização de impactos ambientais relacionados a química orgânica e princípios éticos.

Disciplina: Prática de Ensino e Estágio Supervisionado I								
Carga-horária total C/H teórica C/H prática C/H APS C/H APCC								
		•						
200 102 98 34								

Ementa: Pesquisa da realidade escolar (estrutura, professores, estudantes): observação e desenvolvimento de projeto de ensino que não seja regência. O estudo e a análise de projetos político-pedagógicos e planejamento didático das escolas de Ensino Médio e a participação efetiva do acadêmico no campo de estágio.

Disciplina: Química Orgânica I								
Carga-horária	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT			
total		-						
68	68			08				

Ementa: Estudo dos compostos orgânicos abordando a ligação química carbono-carbono, propriedades físicas, o caráter ácido e básico, os efeitos eletrônicos, estereoquímica. Reatividade e mecanismos de reação de alcanos, alcenos, alcinos, dienos e haletos de alquila. Reações de substituição nucleofílica e de eliminação.

Disciplinas do 3º Ano – 2º Semestre

Disciplina: Físico-Química II								
Carga-horária total	otal C/H teórica C/H prática C/H APS C/H APCC C/H EXT							
68	68							

Ementa: Termodinâmica e Equilíbrio: formalismo do equilíbrio, relação entre ΔG° e K, efeito da temperatura, potencial químico. Equilíbrio de Fases de Substâncias Puras: diagramas de fases, potencial químico em função de P e T, equação de Clapeyron. Equilíbrio de Fases de Misturas: grandezas parciais molares, soluções ideais e reais, lei de Raoult e de Henry, coeficientes de atividade, diagramas de fases de misturas: diagramas líquido-gás, líquido-líquido e líquido-sólido, propriedades coligativas. Sistemas Eletroquímicos: potenciais padrão, células eletroquímicas, relação entre ΔG° , ΔE° e K, equação de Nernst, aplicações de eletroquímica.

Disciplina: Laboratório de Química Orgânica II								
Carga-horária	C/H teórica C/H prática C/H APS C/H APCC C/H EXT							
total		-						
68		68						

Ementa: Reações dos principais grupos funcionais (álcoois, haletos de alquila, carbonílicos, aromáticos e aminas). Estudo da reatividade de grupos funcionais, abordando reações de oxidação, redução, substituição, eliminação e substituição eletrofílica aromática. Preparação de compostos orgânicos por meio de metodologias usuais. Minimização de impactos ambientais relacionados a química orgânica e princípios éticos.

Disciplina: Métodos Espectrofotométricos								
Carga-horária total	C/H teórica C/H prática C/H APS C/H APCC C/H EXT							
34	34							

Ementa: Espectrometria de absorção molecular na região do ultravioleta e do visível. Espectrometria de absorção atômica. Espectrometria de emissão atômica. Espectrometria de fluorescência.

Disciplina: Química e Educação Ambiental								
Carga-horária	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT			
total		-						
34	34			34	34			

Ementa: A Educação Ambiental (EA) em uma vertente crítica e emancipatória e as relações com o Ensino de Química da Educação Básica: entendimentos de Educação Ambiental e meio ambiente; legislação, EA na escola. Os conceitos químicos e o meio ambiente (ciclos biogeoquímicos, poluentes e outros). A aula de Química e o desenvolvimento da EA; análise de material didático; relações com a Abordagem CTS (Ciência, Tecnologia e Sociedade); Química Verde. Elaboração de atividades didáticas relacionando Química e Educação Ambiental na Educação Básica.

Disciplina: Química Inorgânica II									
Carga-horária total	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT				
		•							
68	68								

Ementa: Química dos metais de transição e o desenvolvimento da química de coordenação. Nomenclatura e isomeria dos compostos de coordenação. Aplicação das Teorias de Ligação de Valência, dos Orbitais Moleculares e do Campo Cristalino aos complexos metálicos. Reatividade e mecanismos de reações dos compostos de coordenação. Compostos organometálicos, metalorgânicos, cadeias, gaiolas e *clusters*. Aspectos ambientais e econômicos relacionados à química inorgânica.

Carga-horária C/H teórica C/H prática C/H APS C/H APCC C/H EX	Disciplina: Química Orgânica II								
	_	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT			
68 68	68	68							

Ementa: Mecanismos de reação de álcoois, éteres, cetonas, aldeídos, ácidos carboxílicos e seus derivados e compostos nitrogenados. Reações de oxidação e redução dos

compostos orgânicos. Reações de adição e substituição nucleofílica em compostos carbonílicos. Formação e reações de enolatos. Estudo dos compostos aromáticos benzênicos e não-benzênicos (nomenclatura, reatividade, reações).

Disciplinas do 4º Ano – 1º Semestre

Disciplina: Ensino de Ciências e Formação Docente								
Carga-horária C/H teórica C/H prática C/H APS C/H APCC C/H EXT								
total								
34	34			34				

Ementa: A educação Científica, a função social do conhecimento e sua relação com os direitos humanos. A área de ensino de Ciências e os saberes compartilhados: interdisciplinaridade e conhecimentos em rede; saberes docentes e a formação da identidade profissional do docente de Química: autonomia, ética, organização de trabalho. O ensino de Ciências e suas relações históricas, sociais, econômicas, políticas e culturais no Brasil e no Paraná.

Disciplina: Físico-Química III									
Carga-horária total C/H teórica C/H prática C/H APS C/H APCC C/H EX									
68	68								

Ementa: Cinética Química: velocidade das reações, leis de velocidade, ordens de reação e constante de velocidade, mecanismos de reação, molecularidade, estado estacionário, reações complexas, equação de Arrhenius, energia de ativação, teoria das colisões, complexo ativado, catálise homogênea e enzimática. Estado Líquido: interações intermoleculares, tensão superficial, viscosidade, capilaridade, estabilidade de coloides, tensoativos e micelas. Macromoléculas e Polímeros: reações de adição e condensação, propriedades das macromoléculas. Química de Superfície: superfícies sólidas, processo de adsorção, isotermas de adsorção, cinética dos processos superficiais, catálise heterogênea.

Disciplina: Laboratório de Química Inorgânica II								
Carga-horária total C/H teórica C/H prática C/H APS C/H APCC C/H EXT								
68		68						

Ementa: Experimentos relacionados à química dos elementos de transição: síntese de alguns compostos de coordenação e suas caracterizações químicas e espectroscópicas. Minimização de impactos ambientais e princípios éticos.

Disciplina: Métodos Eletroanalíticos									
Carga-horária C/H teórica C/H prática C/H APS C/H APCC C/H EXT									
total		-							
34	34								

Ementa: Conceitos fundamentais da Eletroquímica. Potenciometria, condutimetria, voltametria, cronoamperometria e técnicas de Redissolução. Sensores eletroquímicos.

Disciplina: Métodos Cromatográficos								
Carga-horária C/H teórica C/H prática C/H APS C/H APCC C/H EX								
total		-						
34	34							

Ementa: Fundamentos e aplicações dos principais métodos cromatográficos como ferramentas para a separação, identificação e determinação de espécies químicas. Cromatografia em fase gasosa. Cromatografia líquida de alta eficiência: cromatografia de troca iônica, cromatografia de exclusão e cromatografia em fase normal e em fase reversa. Principais detectores usado em cromatografia. Aplicações em diferentes campos da ciência e tecnologia.

Disciplina: Prática de Ensino e Estágio Supervisionado II								
Carga-horária C/H teórica C/H prática C/H APS C/H APCC C/H EX								
total								
200	68	132			14			

Ementa: Elaboração e desenvolvimento supervisionado de um Projeto de Ação Didática com intervenção didática em sala de aula, para o Ensino Médio, tendo em vista os estudos, projetos e atividades realizados durante todo curso de Química-Licenciatura e como forma de pesquisa do cenário da escola, proporcionando, assim, uma atuação consciente e planejada na prática pedagógica. A elaboração e desenvolvimento de atividades complementares à prática pedagógica, como oficinas, minicursos, atividades experimentais, sequências didáticas e outros. Elaboração de produção final do estágio na forma de relatório final e apresentação no seminário de pesquisa.

Disciplina: Química na Comunidade								
Carga-horária total	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT			
51	17	34			51			

Ementa: Atividades de inserção do acadêmico na comunidade identificando situações problemas em distintos espaços. Estas atividades efetivam o estudo, planejamento e execução de propostas que visam a solução dos problemas identificados, considerando os Objetivos do Desenvolvimento Sustentável (ODS).

Disciplinas do 4º Ano - 2º Semestre

Disciplina: Análise Orgânica Instrumental								
Carga-horária total C/H teórica C/H prática C/H APS C/H APCC C/H EX								
51	51							

Ementa: Abordagem teórica das técnicas espectroscópicas usuais: Absorção na Região do Infravermelho, Ressonância Magnética Nuclear de Próton e ¹³C, Absorção na Região do Ultravioleta-visível, Espectrometria de Massa. Interpretação de espectros das diferentes técnicas.

Disciplina: Laboratório de Físico-Química								
Carga-horária	Carga-horária C/H teórica C/H prática C/H APS C/H APCC C/H EX							
total		-						
68		68						

Ementa: Gases e suas leis empíricas, medidas calorimétricas de reações químicas e transições de fase, diagramas de fases de substâncias e misturas, propriedades coligativas, potenciais padrão de células eletroquímicas, processos eletrolíticos e aplicações da equação de Nernst, propriedades dos líquidos (viscosidade, capilaridade e ângulo de contato), determinação da CMC, condutometria, isotermas de adsorção, determinação da massa molar de um polímero por viscosimetria, velocidade das reações e efeito da temperatura, processos catalíticos. Minimização de impactos ambientais e princípios éticos.

Disciplina: Laboratório de Química Analítica Instrumental					
Carga-horária	C/H teórica C/H prática C/H APS C/H APCC C/H EXT				
total		-			
51		51			

Ementa: Experimentos direcionados às metodologias analíticas envolvendo técnicas instrumentais espectrofotométricas e eletroanalíticas.

Disciplina: Monografia de Graduação					
Carga-horária total	orária total C/H teórica C/H prática C/H APS C/H APCC C/H EXT				
34	34			30	17

Ementa: A natureza da investigação em Educação/Ensino de Ciências/Química e as questões epistemológicas e metodológicas que envolvem o processo de pesquisa. Estrutura e organização dos projetos de pesquisa. A monografia de graduação como resultado da investigação realizada.

Disciplina: Optativa					
Carga-horária total	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT
		•			
51	51				

Ementa: A ementa da disciplina optativa deve ser pertinente ao currículo do curso de Química-Licenciatura, podendo incluir temas de formação complementar ou avançada em algumas das subáreas de formação específica do licenciado.

- * A escolha da disciplina optativa será realizada a partir de uma consulta aos acadêmicos que terão pelo menos duas opções, propostas por professores do curso de Química. A disciplina com o maior número de inscritos será a ofertada.
- * A ementa deve ser previamente proposta por professores do curso de Química, aprovada pelo Colegiado e homologada pelo Centro.
- * O aluno da Licenciatura poderá cursar como optativas as disciplinas complementares da formação específica de Química do curso de Bacharelado, sendo elas: Métodos Cromatográficos, Mineralogia, Química dos Materiais, Microbiologia e Fermentações, Química dos Processos industriais, Química Bioinorgânica, Tecnologia de Medicamentos e Química Farmacêutica e Industrial.

Disciplina: Princípios de Bioquímica					
Carga-horária	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT
total					
51	51				

Ementa: Os constituintes químicos celulares fundamentais: carboidratos, lipídeos, proteínas, enzimas e ácidos nucleicos. Estruturas, estereoquímica, reações, função biológica. Ciclos bioenergéticos: glicólise, ciclo do ácido cítrico (ciclo de Krebs), ciclo de β-oxidação de ácidos graxos (ciclo de Lynen), cadeia de fosforilação oxidativa (cadeia respiratória), ciclo da ureia.

Disciplina: Química e Educação Formal					
Carga-horária	C/H teórica	C/H prática	C/H APS	C/H APCC	C/H EXT
total					
34	34			34	34

Ementa: Educação intercultural - aspectos históricos, políticos e legais e as implicações metodológicas para o Ensino de Química: Direitos Humanos; Educação do Campo; Educação Especial; Educação de Jovens e Adultos; História e Cultura Afro-Brasileira; Indígenas e Quilombolas; Educação, Gênero e Diversidade.

X - DESCRIÇÃO DAS ATIVIDADES PRÁTICAS

A Química é uma ciência que se caracteriza fundamentalmente pela sua vertente prática e experimental. Assim, um curso de Química onde o componente prático de laboratório não esteja presente não pode ser chamado de um curso de Química.

Desta forma, o curso de Química Licenciatura deverá manter uma relação estreita entre a teoria e a prática. A experimentação como atividade desenvolvida em cada uma das disciplinas propostas para o curso deverá ser expressamente delimitada e estar presente em todos os planos de ensino. É preciso que a relação teoria e prática não seja considerada como campos distintos do conhecimento, devendo formar um corpo único e coerente, tendo em vista o papel da experimentação para a consolidação do conhecimento químico. Serão também consideradas atividades práticas no curso de Química, as atividades constantes na formação profissional, como os estágios supervisionados e o projeto de ensino, e estes terão como objetivo básico, os seguintes pressupostos:

- A relação entre a teoria e a prática e vice-versa;
- A relação entre o estudado em sala e a atuação do futuro profissional;
- A formação sólida em técnicas e atividades práticas e experimentais;
- A coerência entre o estudado e sua aplicação, respeitando as normas ambientais.
- A inserção do profissional no seu futuro campo de atuação e o desenvolvimento dos conhecimentos específicos diretamente em situações reais.

Todas as atividades práticas experimentais são propostas tendo em vista o objetivo de possibilitar aos estudantes o exercício da correlação entre a teoria e os resultados observados durante os experimentos, permitindo um maior contato com procedimentos e equipamentos dos laboratórios, de tal forma que possam utilizá-los em seus futuros locais de trabalho. As atividades desenvolvidas na universidade são regidas pelo Regulamento das Atividades Práticas e Experimentais do Curso de Química da UNIOESTE, constantes em documentos próprios do curso.

 a) DESCRIÇÃO DAS ATIVIDADES PRÁTICAS DE LABORATÓRIO, DE SALA OU DE CAMPO (AP)

Componentes curriculares introdutórias à Química – Laboratório de Fundamentos da Química I e II

- Apresentação do componente curricular e das normas para elaboração dos relatórios das práticas.
- 2. Procedimentos, normas de segurança e cuidados com equipamentos básicos de laboratórios de química.
- 3. Técnicas básicas de laboratório: medidas de massa, de volume, calibrações, titulação e limpeza de materiais.
- 4. Métodos de separação de misturas: filtração, destilações, extração, dissolução fracionada e centrifugação.
- 5. Bicos de gás e testes de chama de diferentes sais.
- 6. Técnicas de determinação do ponto de fusão de sólidos e de vaporização de líquidos.
- 7. Diferença entre fenômenos físicos e fenômenos químicos.
- 8. Preparação de soluções: a partir da dissolução de um sólido e da diluição de um líquido.
- 9. Indicadores ácido-base e papel indicador de pH.
- 10. Titulação ácido-base: padronização de uma solução de ácido forte.
- 11. Titulação ácido-base: padronização de uma solução de base forte.
- 12. Titulação ácido-base: determinação do teor de ácidos e bases em produtos comerciais.
- 13. Solução tampão: eficiência e faixa de pH de ação de um tampão.
- 14. Reações em solução aquosa: formas de se reconhecer a ocorrência de uma reação.
- 15. Cálculo estequiométrico: Quantificação do teor de água em hidratos.

- 16. Lei dos gases: quantificação do CO₂ obtido a partir da reação do CaCO₃ com H₂SO₄.
- 17. Lei de difusão dos gases: Comparação entre a difusão dos gases HCl e NH₃.
- 18. Determinação da curva de solubilidade do nitrato de potássio.
- 19. Interações intermoleculares: estudo da miscibilidade entre líquidos.
- 20. Interações intermoleculares: comparação das tensões superficiais de líquidos.
- 21. Equilíbrio químico: deslocamento do equilíbrio cromato/dicromato em função do pH.
- 22. Cinética química: determinação da ordem de reação do tiossulfato com ácido clorídrico.
- 23. Reações de oxirredução: comparação entre as reatividades dos metais.
- 24. Eletroquímica: montagem e medida do potencial de uma célula eletroquímica.
- 25. Eletroquímica: decomposição eletrolítica da água.

Componentes curriculares da Área de Química Analítica

- 1. Estudos de equilíbrios em solução aquosa: ácido-base, precipitação, complexação, óxido-redução.
- Identificação de substâncias por via clássica vantagens e problemas.
- 3. Rota analítica para a caracterização de resíduos químicos, com amostras do laboratório.
- 4. Hidrólise de sais.
- Soluções tampão e capacidade tamponante.
- Titulação ácido-base: preparação e padronização de soluções.
- 7. Titulação potenciométrica. Método de Gran e das derivadas.
- 8. Determinação de espécies de interesse analítico em amostras concretas utilizando a titulação ácido-base, de precipitação, de complexação, de óxido-redução (em torno de 10 práticas neste item).
- 9. Análises gravimétricas.
- Determinação de constantes de equilíbrio.
- 11. Calibração de materiais, determinação de erros analíticos e estatística aplicada aos resultados analíticos das práticas.
- 12. Espectro de absorção molecular na região do visível e ultravioleta de compostos de interesse analítico;
- 13. Determinação de misturas de substâncias por espectroscopia UV-visível.
- 14. Determinação de constantes de equilíbrio por espectroscopia Visível

15. Determinação em fotômetro de chama.

Componentes curriculares da Área de Química Inorgânica

- 1. Estudos de propriedades físico-químicas dos elementos representativos visando exploração do caráter periódico (Experimentos envolvendo elementos representativos dos Grupos periódicos 1, 2, 13, 14, 15, 16 e 17);
- 2. Síntese e caracterizações por análises químicas e espectroscópicas de substâncias contendo elementos químicos do grupo representativo;
- 3. Sínteses de complexos de metais de transição e de compostos químicos de elementos de transição;
- 4. Caracterizações de complexos metálicos por análises do teor de metal, contra-íon e de ligantes, através de análises elementares de metais e de outros elementos químicos;
- 5. Caracterizações de complexos metálicos por métodos físico-químicos (condutividade, potenciais padrão, pontos de fusão, estabilidade térmica, entre outros);
- 6. Aplicações de técnicas espectroscópicas aos compostos inorgânicos: espectroscopia eletrônica e vibracional.
- 7. Estudos dos mecanismos de reações de compostos de coordenação em solução.

Componentes curriculares da Área de Química Orgânica

- 1. Propriedades físicas de compostos orgânicos: ponto de fusão e ponto de ebulição.
- 2. Propriedades químicas de compostos orgânicos: solubilidade.
- 3. Técnicas de purificação
- 4. Métodos de separação baseados nas propriedades de solubilidade e ácido-básica de compostos orgânicos: extração líquido-líquido.
- 5. Métodos de isolamento Extração da cafeína.
- 6. Ensaios qualitativos de identificação de grupos funcionais Análise orgânica clássica.
- 7. Propriedades ácidas e básicas de compostos orgânicos: saponificação.
- Reatividade de alcenos.
- Preparação de álcoois.
- 10. Reações de álcoois.
- 11. Preparação de éteres.
- 12. Preparação de haletos de alquila.

- 13. Preparação de cetonas.
- 14. Reações de cetonas.
- 15. Condensação aldólica.
- 16. Esterificação e transesterificação.
- 17. 17 Reações de compostos nitrogenados.
- 18. 18 Preparação de polímeros.

Componentes curriculares da Área de Físico-Química

- 1. Leis dos gases, gases ideais e reais.
- 2. Determinação de Entalpia de mistura e de neutralização.
- 3. Determinação de entalpia de transição de fase.
- 4. Diagrama de fase, miscibilidade de dois líquidos.
- 5. Diagrama de fases, sistema ternário.
- 6. Determinação de massa molar por crioscopia.
- 7. Determinação da pressão de vapor de líquidos puros em função de T.
- 8. Pressão de vapor de misturas de líquidos.
- 9. Viscosidade e densidade de líquidos.
- 10. Determinação de grandezas termodinâmicas em função de K.
- 11. Determinação do K_{ps} por condutividade.
- 12. Determinação de condutividade específica e coeficiente de atividade.
- 13. Células eletroquímicas: potencial em função da concentração e da temperatura.
- 14. Equação de Nernst e célula de concentração.
- 15. Reação de primeira ordem, decomposição de um complexo.
- 16. Reações de 2ª ordem.
- 17. Tensão superficial e Ângulo de contato.
- 18. Adsorção em superfície sólida.
- 19. Determinação do coeficiente de absorção molar.
- 20. Emulsão do glicerol e determinação do raio molecular.
- 21. Concentração micelar crítica.
- 22. Determinação de peso molecular de polímeros por viscosidade.

Bioquímica

Extração e caracterização de carboidratos.

- 2 Dosagem de carboidratos.
- 3 Extração e caracterização de lipídeos.
- 4 Dosagem de lipídeos.
- 5 Extração e caracterização de proteínas.
- 6 Dosagem de proteínas.
- 7 Cromatografia de aminoácidos.
- 8 Caracterização de enzimas.
- 9 Extração e atividade de enzimas.
- 10 Cinética enzimática.
- 11 Extração e caracterização de ácidos nucleicos.

Física

- 1. Medições.
- 2. Queda-livre.
- 3. Mesa de forças.
- 4. Lei de Hooke.
- 5. Centro de massa.
- 6. Colisão bidimensional.
- 7. Momento de inércia.
- 8. Princípio de Arquimedes.
- 9. Oscilações.
- 10. Ondas estacionárias.
- 11. Eletrostática.
- 11 Curvas equipotenciais.
- 12 Componentes ôhmicos e não-ôhmicos.
- 13 Resistência interna de FEM.
- 14 Componentes ópticos: espelhos e lentes.
- 15 Difração.
- b) DESCRIÇÃO DAS ATIVIDADES DE PRÁTICAS DE ENSINO E ESTÁGIO SUPERVISIONADAS (APS)

Estágios, de forma geral, são atividades que levam os estudantes a interagirem com a realidade da escola e inserirem-se no mundo de trabalho. Essa inserção proporciona a vivência de novas experiências além daquelas vividas na Universidade. Observa-se que

muitos acadêmicos, ao saírem de seus cursos de graduação, têm consciência dos limites de sua formação, principalmente no que se refere ao desenvolvimento de atividades no seu futuro local de trabalho. Expressam a convicção de que só se tornarão efetivamente profissionais quando estiverem em sua prática profissional.

Formar-se em um curso de graduação é ser autorizado a tornar-se profissional por meio da prática. Assim, a formação do profissional é um processo contínuo que tem na graduação um espaço/tempo importante desde que ela propicie a reflexão efetiva sobre o fazer. É durante o estágio que o acadêmico tem contato com a realidade no seu campo de atuação, as instituições de educação básica da rede pública de ensino, um espaço privilegiado para a prática docente. Assim, a formação do profissional não se dá somente por intermédio dos Componentes Curriculares constantes nas estruturas curriculares dos cursos de graduação ou dentro dos "muros da Universidade".

Desta forma, o estágio constitui-se num momento único de experiência da profissão de Licenciado em Química, cujo campo de estágio é a escola, e é realizado durante a vigência do 3º e do 4º ano do curso, sendo um elo entre os conteúdos estudados nos diferentes componentes curriculares.

O estágio está associado à Prática de Ensino no mesmo componente curricular, que fornecerá ao acadêmico os princípios teóricos necessários à sua atuação no campo de estágio. Da mesma forma, os componentes curriculares pedagógicos, profissionalizantes de Práticas como Componentes Curriculares serão suportes importantes para o desenvolvimento das atividades de estágio. Tanto as componentes curriculares de Prática de Ensino e Estágio Supervisionado I (3º ano) como a Prática de Ensino e Estágio Supervisionado II (4º ano) se darão de forma direta.

Os documentos e termos obrigatórios do estágio devem ser entregues ao professor responsável pelo Componente Curricular, que encaminhará ao coordenador de estágio. As atividades do estágio são supervisionadas por um docente do Colegiado do Curso e acompanhadas por um supervisor de campo no próprio ambiente de estágio; a avaliação do estágio será feita conforme o Regulamento de estágio do Curso de Química Licenciatura.

c) DESCRIÇÃO DAS PRÁTICAS COMO COMPONENTES CURRICULARES (APCC)

Segundo o Parecer CNE/CP nº 9/2001: "Uma concepção de prática mais como componente curricular implica vê-la como uma dimensão do conhecimento que tanto está

presente nos cursos de formação, nos momentos em que se trabalha na reflexão sobre a atividade profissional, como durante o estágio, nos momentos em que se exercita a atividade profissional". Assim, um conjunto de disciplinas formativas foram definidas como Práticas como Componentes Curriculares, uma vez que estes componentes curriculares proporcionam experiências de aplicação de conhecimentos necessários ao exercício da docência. Na concepção do presente PPP as seguintes disciplinas são consideradas PCC: Pesquisa em Educação (34 h), Metodologia para o Ensino da Química (68 h), História e Filosofia para o Ensino da Química (34 h), Instrumentação para o Ensino da Química (68 h), Ensino de Ciências e Formação Docente (34 h), Química e Educação Formal (34 h) e Monografia da Graduação (30 h). Nas disciplinas de: Química Analítica (102 h), Química inorgânica I (68h), Química Orgânica I (68h), Físico-Química I (68h) foram destinadas 8 horas como Prática como Componente Curricular para cada componente curricular, totalizando 32 h. A carga horária total das Práticas como Componentes Curriculares é de 400 horas.

d) DESCRIÇÃO DAS ATIVIDADES DE EXTENSÃO UNIVERSITÁRIA

Segundo a RESOLUÇÃO Nº 85 /2021-CEPE, de 20 de maio de 2021, que aprova o regulamento das atividades acadêmicas de extensão na forma de componentes curriculares para os cursos de graduação, na modalidade presencial e a distância, da Unioeste, a carga horária das atividades de extensão deve contemplar as áreas de competência de cada curso e, a critério do colegiado do curso, é executada sob a forma de programas, projetos, cursos, oficinas, eventos, prestação de serviços e disciplinas em intervenções que envolvam diretamente as comunidades externas a Unioeste. Neste sentido optamos pelas seguintes modalidades de curricularização:

Disciplina	Ano/Semestre	Carga horária
Português instrumental	1 ano/ 1 sem	34h
Tecnologias Computacionais para as Ciências	1 ano/ 2 sem	34h
Tecnologia, Inovação e Sustentabilidade I	2 ano/ 1 sem	34h
Tecnologia, Inovação e Sustentabilidade II	2 ano/ 2 sem	34h
Química e Educação Ambiental	4 ano/ 1 sem	34h
Química e Educação Formal	4 ano/ 2 sem	34h
	Subtotal:	204

Parte de disciplina		
Prática de Ensino e Estágio	3 ano/ anual	34 h
Supervisionado I		
Prática de Ensino e Estágio	4 ano/ anual	14h
Supervisionado I		
Monografia	4 ano/ anual	17h
	Subtotal:	65
Química na Comunidade	4 ano/ 1 sem	51h
	Subtotal:	51
	Total:	320

Como a curricularização para o Curso de Química Licenciatura foi proposto em várias modalidades (disciplinas, parte de disciplinas e projetos) cada, modalidade terá ações específicas. A execução das atividades de extensão será descrita no plano de ensino das disciplinas, bem como a forma metodológica e avaliação. Antes de qualquer atividade de extensão o acadêmico irá receber orientações teóricas e como será a sua inserção na comunidade de modo extensionista. As ações extensionistas previstas em cada disciplina são descritas a seguir:

A) Na modalidade Disciplina:

1) Português Instrumental

Ações de Extensão: A disciplina de Português instrumental pretende aprimorar a comunicação oral e escrita dos conhecimentos adquiridos pelo acadêmico no decurso dos seus estudos universitários e desta maneira capacitá-lo para a disseminação destes conhecimentos à comunidade por meio das ações de extensão. Entende-se que a comunicação se dará de modo mais eficiente quando o acadêmico conseguir "traduzir" a linguagem acadêmica para uma forma de comunicação cotidiana, mas respeitando os cânones da Língua Portuguesa.

2)Tecnologias Computacionais para as Ciências

Ações de extensão: Estas tecnologias poderão ser implementadas tanto em empresas da região, bem como, escolas de ensino médio, com a finalidade de melhorar o aprendizado e análise de dados nestas áreas da ciência.

 Tecnologia, Inovação e Sustentabilidade I e Tecnologia, Inovação e Sustentabilidade II Ações de Extensão: Elaboração de projetos de extensão com temas relacionados a tecnologia, a inovação e sustentabilidade presentes na comunidade e apresentação dos resultados para diferentes setores da sociedade.

4) Química e Educação Ambiental

Ações de Extensão: Atividades relacionadas ao meio ambiente, tais como produção e descarte lixo orgânico, pilhas e demais resíduos que causam danos ao meio ambiente. Atividade que pode variar a cada ano em que a disciplina será ofertada, podendo se fazer ações nos bairros, escolas, município etc.

5) Química e Educação Formal

Ações de Extensão: Atividades em espaços multiculturais estudados na disciplina, estudos de contexto e ações formativas específicas para cada espaço, podendo variar a cada ano que a disciplina for ofertada, por exemplo: ações formativas na EJA, em Escolas do Campo, entre outros.

B) Na modalidade parte de Disciplina:

1) Prática de Ensino e Estágio Supervisionado I

Ações de Extensão: Cursos e oficinas para diferentes públicos, abordando temas como: Arte, cultura, literatura; Tecnologias de informação e comunicação, mídias, divulgação da ciência; Ensino de ciências e alfabetização científica; Recursos naturais (exploração e consumo, preservação); Agricultura e pecuária; Saberes não científicos e científicos, entre outros.

2) Prática de ensino e Estágio Supervisionado II

Ações de Extensão: Atividades em espaços não-formais do município e distritos de Toledo, como visitas guiadas, estudos do meio, rodas de conversa, entre outros.

3) Monografia

Ações de Extensão: Atividades nas quais o acadêmico irá desenvolver comunicar a comunidade acadêmica e comunidade sobre seu trabalho de conclusão de curso.

C) Na modalidade Química na Comunidade:

Ações de Extensão: Esta modalidade será abordada na forma de projetos em que os acadêmicos irão elaborar, desenvolver, propor uma solução e apresentar em exposições, feiras ou evento de forma a publicizar seus trabalhos. Este projeto pode ser elaborado como um estudo de caso relacionado a sua comunidade, município ou escola de estágio.

XI - DESCRIÇÃO DO ESTÁGIO OBRIGATÓRIO E NÃO OBRIGATÓRIO Não se aplica.

XII - DESCRIÇÃO DO TRABALHO DE CONCLUSÃO DE CURSO

O trabalho de Conclusão de Curso corresponde à Monografia de Graduação, um componente curricular de caráter anual presente no último ano do curso de Química Licenciatura.

A Monografia de Graduação, realizada individualmente, tem por objetivo relatar um trabalho de pesquisa na sua área de formação, e deverá estar relacionada com temas ligados à Química e à Educação, preferencialmente em Educação em Química ou Ciências. Também poderão ser utilizados resultados obtidos durante os estágios supervisionados obrigatórios.

O texto final deve ser estruturado na forma de uma monografia ou de um artigo científico, seguindo neste caso as normas de redação estabelecidas pelo periódico escolhido.

A monografia deverá ser apresentada e defendida publicamente pelo acadêmico perante uma banca examinadora composta por três membros para avaliação, conforme regulamento próprio do Curso, atendendo às exigências e parâmetros estabelecidos pela Resolução nº 208/2018-CEPE.

XIII – DESCRIÇÃO DAS ATIVIDADES ACADÊMICAS COMPLEMENTARES

São todas as atividades que contribuam para a formação integral do acadêmico, não contempladas no currículo do curso. Estas atividades perfazem um total de 200 horas, contabilizadas de acordo com regulamento próprio do curso. Resolução CNE/CP 2/2002.

As atividades complementares são de escolha do acadêmico e têm por objetivo possibilitar-lhe uma formação ampla e diversificada, conforme suas necessidades ou intenções.

São consideradas atividades complementares, por exemplo: eventos, cursos, projetos de extensão, pesquisa, ensino, monitorias acadêmicas, atividades científicas, artísticas, culturais e de integração e qualificação e outras atividades previstas no regulamento próprio do Curso, o qual atende às exigências e parâmetros estabelecidos pela Resolução nº 099/2016-CEPE.

XIV - DESCRIÇÃO DA PESQUISA

De acordo com a Resolução nº 378/2007-CEPE, artigo 2º: "Considera-se Pesquisa toda e qualquer atividade de natureza investigativa, com objeto e metodologia definidos, aprovada pela UNIOESTE ou por agências de fomento reconhecidas institucionalmente". Um dos objetivos da Pesquisa é a sua articulação com o ensino e a extensão, além de possibilitar

PARANÁ
GOVERNO DO ESTADO

Reitoria - CNPJ 78.680.337/0001-84 - www.unioeste.br Fone: +55 (45) 3220-3000 | Rua Universitária, 1619 Jardim Universitário | CEP 85819-110 | Cascavel/PR | Brasil

uma melhor formação dos acadêmicos de graduação pela participação em atividades de pesquisa.

O curso de Química possui quatro grupos de pesquisa cadastrados no diretório de Grupos do CNPq, os quais desenvolvem projetos relacionados às atividades gerais da Química. As designações desses quatro grupos são: GIPeFEA (Grupo Interdisciplinar de Pesquisa em Fotoquímica e Eletroquímica Ambiental); GPCMat (Grupo de Pesquisa em Ciências de Materiais); QABio (Grupo de Pesquisa em Química Aplicada e Biotecnologia) e GEPIEC (Grupo de Estudos, Pesquisa e Investigação em Ensino de Ciências). As pesquisas desenvolvidas por esses grupos, que envolvam seres humanos, atendem à Resolução nº 196/1996-CNS.

No ano de 2004 foi criado o GIPeFEA, formado exclusivamente por pesquisadores vinculados ao curso de Química, cujas áreas de atuação englobavam principalmente a Fotoquímica e a Eletroanalítica. Atualmente, as linhas de pesquisa do GIPeFEA abrangem os seguintes tópicos:

- 1. Fotoquímica;
- 2. Eletroanalítica:
- 3. Química dos Materiais.

Dentre os projetos desenvolvidos pelo GIPeFEA estão os seguintes:

- Emprego de métodos fotoquímicos para a degradação de compostos orgânicos poluentes.
- Emprego de métodos eletroquímicos para a degradação de poluentes orgânicos.
- Construção de sensores eletroquímicos.
- Investigação de processos de encapsulamento de compostos orgânicos em nanocavidades.
- Uso de fibras eletrofiadas para s adsorção, liberação e degradação de fármacos.
- Síntese e estudos das propriedades fotofísicas e do comportamento fotoquímico de derivados azalactônicos.

Ainda em 2004 o Grupo de Pesquisa em Química Aplicada e Biotecnologia – QABio foi formado e o mesmo conta hoje com 4 pesquisadoras. O grupo atua em quatro linhas de pesquisa distintas:

- 1. Química de Produtos Naturais
- 2. Síntese Orgânica
- 3. Biofísica
- 4. Química Medicinal

Dentre os projetos desenvolvidos pelo QABio podemos destacar:

- Biomonitoramento de extratos de plantas terrestres e aquáticas, visando a descoberta de novos princípios ativos com atividade antimicrobiana, alelopática, antioxidante, além de avaliar a toxicidade destes materiais:
- Síntese de compostos heterociclos e organocalcogênios e química limpa;
- Investigação de substâncias hemaglutinantes (lectinas) e inibidores de proteases nos extratos de sementes das espécies vegetais;
- O uso de ferramentas de quimioinformática e bioinformática para a busca de substâncias com características antimicrobianas.
- Estudo de micro-organismos geneticamente modificados para área farmacêutica e agrícola.

Os Trabalhos relacionados a estas linhas de pesquisa desenvolvem materiais aplicáveis ao desenvolvimento de técnicas analíticas, como a microextração em fase sólida; ao desenvolvimento de materiais potencialmente aplicáveis como implantes (biovidros e biocerâmicas); como acumuladores de energia em processos fotocatalíticos; e no desenvolvimento de materiais aplicáveis como sensores e fotossensores. Na linha de pesquisa Síntese, caracterização e estudos de propriedades de ftalocianinas e bisftalocianinas metálicas são realizadas sínteses de ftalocianinas e bisftalocianinas usando diferentes metais, podendo ser sintetizadas também com substituições nos anéis periféricos. Esses compostos, dependendo das propriedades apresentadas, são estudados em solução ou na forma de filmes finos. As caracterizações dos produtos obtidos são realizadas por espectroscopia na região do infravermelho (IV) e do ultravioleta-visível (UV-VIS). Para o estudo dos compostos na forma de filmes são usadas diferentes técnicas, como Casting e Langmuir-Blodgett. Os filmes formados são submetidos a tratamentos térmicos e eletroquímicos para estudo de possíveis mudanças na orientação das moléculas sobre os substratos. Os filmes formados também têm propriedades para atuarem como sensores gasosos, sensores eletroquímicos, entre outros. Usando a técnica de voltametria cíclica é possível estudar a atuação desses filmes como sensores para pesticidas, principalmente em águas de rios que possam estar contaminadas por esse tipo de substância. Outras técnicas que geralmente são usadas para analisar os filmes formados são Microscopia de Força Atômica (AFM) e difração de raios-X.

Em 2015 foi criado o GEPIEC (Grupo de Estudos, Pesquisa e Investigação em Ensino de Ciências) com o objetivo de desenvolver pesquisas sobre o Ensino de Ciências e Química.

O grupo é constituído por: docentes efetivos e colaboradores da UNIOESTE e de outras instituições de ensino superior; acadêmicos de mestrado, doutorado, pós-doutorado que integram o PPGECEM - Programa de Pós-graduação em Educação em Ciências e Educação Matemática; acadêmicos de graduação do Curso Química Licenciatura que desenvolvem suas pesquisas de iniciação científica ou contribuem com as pesquisas dos pós-graduandos ou em algum dos projetos desenvolvidos no âmbito da GEPIEC. O grupo de acadêmicos do PIBID Química da UNIOESTE participa do GEPIEC em situações que envolvem ensino e pesquisa.

No ano de 2021 a estrutura do GEPIEC, no que se refere à linha de pesquisa sofreu alteração. Devido a ampliação do número de participantes e de interesse destes em novos temas de investigação, optou-se por excluir a linha de pesquisa "Ensino de Ciências e de Química: fundamentos teóricos e sua relação com a educação escolar e superior", e implementar seis novas linhas, sendo elas:

L1 – Formação de Professores, Ensino e Trabalho Docente.

Estudos à cerca da formação inicial e continuada de professores que atuam no ensino de Ciências dos diferentes níveis e sistemas de ensino, incluindo legislação, práticas pedagógicas e recursos didáticos relacionadas aos estágios supervisionados, cursos, programas de iniciação à docência e projetos de aperfeiçoamento profissional.

L2 - Comunicação científica em espaços de educação: natureza da ciência, discurso e abordagens didáticas interativas para o ensino.

Estudos sobre a comunicação da ciência, considerada em uma perspectiva de Cultura Científica, suas dimensões históricas, filosóficas e sociológicas, envolvendo estudos sobre discurso, argumentação, educação ambiental e abordagens didáticas interativas em diferentes espaços de educação e suas implicações no ensino de ciências

L3 – Ensino e Aprendizagem

Estudos relacionados às teorias de ensino e aprendizagem, em especial a teoria da aprendizagem significativa e seus desdobramentos teóricos, metodológicos e epistemológicos, em contextos educacionais de diferentes níveis de ensino e áreas do conhecimento.

L4 – Pesquisa Qualitativa no Ensino de Química.

Estudo sobre a pesquisa educacional qualitativa no âmbito da Pesquisa no Ensino de Química, observando suporte quantitativo para processos de amostragem e análise de dados,

tendências e aspectos epistemológicos. Destacam-se nesta linha, os aspectos relacionados ao desenho metodológico das pesquisas e das metodologias de análises textuais, entre elas, softwares específicos.

L5 – Alfabetização Científica e abordagem CTSA

Estudos acerca do desenvolvimento e da avaliação de aspectos de Alfabetização Científica, identificando eixos, categorias, dimensões e extensões de AC, relacionados ao Ensino de Ciências e de Química, observando-se material didático, documentos oficiais e processos de ensino. Aliado a isso, estudos da abordagem CTS (Ciência, Tecnologia e Sociedade) e da Educação Ambiental nos processos de formação científica de cidadãos críticos.

L6 – Epistemologias do Sul e o Ensino de Ciências/Química

Estudos que aproximam os conhecimentos científicos e não científicos dos distintos contextos educacionais, com foco no ensino de Ciências e Química, fundamentado nas Epistemologias do Sul, em especial ao conceito Ecologia de Saberes.

Cada linha de pesquisa organiza a dinâmica de seu trabalho que é coordenado por docentes efetivos da UNIOESTE e constituído por pesquisadores docentes e discentes. Reuniões gerais com integrantes de todas as linhas ocorrem periodicamente para socialização das pesquisas. O GEPIEC visa articular não somente a integração entre pesquisadores em níveis diferentes, mas promover investigações que integrem pesquisa, extensão e ensino.

Em 2021 promovemos o "I Seminário de Pesquisa do GEPIEC" com o objetivo de socializar nossas produções e dialogar com convidados externos, que trouxeram temas de suas pesquisas em Ensino/Educação em Ciências.

Entre os projetos desenvolvidos por pesquisadores integrantes do GEPIEC, temos:

- COMQUÍMICA das Crianças;
- Universidade, Escola e Comunidade: aproximando conhecimentos, ensino, aprendizagem e formação docente;
- Educadores Químicos: Coletivos de Formação e Atuação;
- FECI-TOO Feira de Ciências de Toledo;
- Ciência POP: A Divulgação Científica em Rede.

Estes projetos estão cadastrados em seus respectivos setores como PRPPG, PROEX da UNIOESTE.

Além dos grupos de pesquisa mencionados anteriormente, os professores do Curso de Química Licenciatura também atuam em três cursos de pós-graduação: PPGCA (Programa de Pós-graduação em Ciências Ambientais) e o PPGQUI (Programa de Pós-graduação em Química).

PPGCA- Programa de Pós-Graduação em Ciências Ambientais

O Programa de Pós-Graduação em Ciências Ambientais iniciou suas atividades no ano de 2013, na Unioeste Toledo e pretende promover a emergência de novas áreas do saber, o desenvolvimento e a inserção social do conhecimento produzido; contribuir, tanto para a formação técnica como humanística de pessoal especializado, quanto para o desenvolvimento social e aperfeiçoamento de tecnologias, nos âmbitos regional, estadual e nacional, com ênfase na região Oeste do Paraná. O mestrado admite candidatos de diversas áreas do conhecimento, pois caracteriza-se como interdisciplinar. Os docentes que atuam são também de diversas áreas, tais como: Química, Engenharia Química, Administração, Educação, Engenharia Civil, Engenharia de Pesca e outros. Os objetivos do programa são: formar profissionais para atuarem nos seguimentos industrial, acadêmico e público; desenvolver pesquisas técnico-cientificas e humanas nas linhas de pesquisa: Tecnologias aplicadas ao meio ambiente, Dinâmicas socioambientais e educativas e Dinâmicas dos ecossistemas. Incentivar o intercâmbio com indústrias, cooperativas, institutos de pesquisa e universidades. O mestre em CA estará apto para o exercício profissional, no magistério superior e na pesquisa, estando qualificado e capacitado na teoria e na prática, para o desenvolvimento de projetos que busquem a solução de problemas vinculados ao ecossistema, visando a sustentabilidade econômica e ambiental.

PPGQUI - Programa de Pós-Graduação em Química

O Programa de Pós-Graduação em Química (PPGQUI) da Universidade Estadual do Oeste do Paraná/Campus de Toledo foi recomendado na 161ª Reunião do CTC-Capes em 11/12/2015 e, após os tramites legais internos na Universidade, iniciou suas atividades em agosto de 2016. O Programa tem como MISSÃO: Gerar e socializar o conhecimento científico na área da Química, formando profissionais capacitados com responsabilidade ética, social e ambiental. VISÃO: aprimorar os índices do PPGQUI, com evolução contínua nos quesitos estabelecidos pela CAPES, permitindo, assim, a implantação futura do Doutorado. VALORES: integridade científica; ética profissional e responsabilidade social. Assim, a área de concentração (Química) do Programa e o objetivo geral atendem aos desafios da área na

resolução dos problemas nacionais, tão urgente na atualidade, considerando também o impacto da Química na produção intelectual nacional e internacional. O objetivo geral do PPGQUI compreende a formação de pessoal qualificado destinado à docência, à pesquisa científica, ao empreendedorismo na área da Química e suas atribuições e visa possibilitar ao pós-graduando condições para o desenvolvimento de estudos que demonstrem o domínio dos instrumentos conceituais e metodológicos essenciais na sua área, qualificando-o como pesquisador e docente de nível superior, por meio de trabalhos de investigação científica. Além disso, propicia ao pós-graduando condições para o desenvolvimento de uma sólida prática profissional, com integridade e respeito ao meio ambiente e ao ser humano. O programa conta atualmente com 13 docentes permanentes e 03 docentes colaboradores.

Linhas de Pesquisa:

- 1) Química Analítica e Ambiental com temas ligados ao desenvolvimento de metodologias analíticas voltadas à determinação de espécies químicas de relevância farmacológica, alimentar e ambiental, ao desenvolvimento e aplicação de sensores eletroquímicos, à minimização da geração de resíduos farmacêuticos e alimentares e aproveitamento dos mesmos, e a utilização de processos oxidativos avançados na degradação de resíduos de agrotóxicos e fármacos.
- 2)) Obtenção e Aplicação de Materiais (OAMat) com temas ligados ao desenvolvimento de materiais com aplicações tecnológicas e ambientais, compreendendo a síntese de híbridos orgânicos/inorgânicos, polímeros de coordenação, estruturas metalorgânicas, cerâmicos, vidros, biovidros, biocerâmicos e poliméricos; a eletrofiação de polímeros visando a obtenção de nanofibras para aplicações em sistema de liberação controlada de fármacos, crescimento de tecidos e adsorção de espécies químicas e o estudo da aplicação de materiais na conversão e estocagem de energia, sensores químicos, catálise e eletroquímica;
- 3) Obtenção e Aplicação de Compostos Orgânicos (OACO) com temas ligados à síntese, reatividade e avaliação biológica de compostos orgânicos funcionalizados; ao desenvolvimento de metodologias de síntese de compostos orgânicos e organometálicos de interesse farmacológico pelo emprego de metodologias convencionais ou de metodologias sintéticas verdes, à obtenção de óleos essenciais ou extratos de plantas de uso medicinal ou condimentar. Identificação dos constituintes por métodos cromatográficos e avaliação de atividades biológicas e antioxidante, ao desenvolvimento de catalisadores baseados em nanopartículas metálicas e sua aplicação em reações orgânicas, à síntese, modificação de

polímeros e sua avaliação na estabilização de nanopartículas metálicas e em sistemas de drug delivery, à síntese e caracterização de surfactantes baseados em moléculas de origem natural e aos estudos computacionais de propriedades e mecanismos de reações de compostos orgânicos e organometálicos. Química Analítica e Ambiental com temas ligados ao desenvolvimento de metodologias analíticas voltadas à determinação de espécies químicas de relevância farmacológica, alimentar e ambiental, ao desenvolvimento e aplicação de sensores eletroquímicos, à minimização da geração de resíduos farmacêuticos e alimentares e aproveitamento dos mesmos, e a utilização de processos oxidativos.

PPGECEM – Programa de Pós-Graduação em Educação em Ciências e Educação Matemática

O PPGECEM é um programa de pós-graduação que iniciou suas atividades em 2017. Sua aprovação nos órgãos competentes possibilitou a formação na pós-graduação em nível de Mestrado e Doutorado já na primeira turma. O programa é afeto ao CCET – Centro de Ciências Exatas e Tecnológicas do campus de Cascavel, mas atuam neste programa, docentes efetivos e colaboradores da UNIOESTE de todos os campis que possuem formação na área de Educação/Ensino de Ciência e Matemática e áreas afins, cujo objetos de pesquisa são específicos desta área.

O PPGECEM como um programa da área de Educação/Ensino das Ciências Naturais, Exatas e Matemática possibilita o intercâmbio entre graduação e pós-graduação, bem como a efetivação de ações integradoras entre ensino, pesquisa, extensão e inovação entre cursos como o da Matemática Licenciatura, Ciências Biológicas Licenciatura, Química Licenciatura, Pedagogia e áreas afins.

Desde a criação do PPGECEM, as professoras que atuam no curso Química Licenciatura do CECE – Centro de Ciências Exatas e Engenharias, com formação específica na pós-graduação em Educação ou Educação em Ciências (foco no Ensino de Química) tem atuado neste programa ministrando disciplinas, orientando pós-graduandos de mestrado e doutorado em suas pesquisas, além de realizarem supervisão de estágios de pós-doutorado deste programa.

Estas professoras integram o GEPIEC - Grupo de Estudos, Pesquisa e Investigação em Ensino de Ciências, cadastrado na PRPPG – Pró-reitoria de Pesquisa e Pós-graduação e Diretório de Grupos de Pesquisa do CNPq. O desenvolvimento das ações do GEPIEC ocorre no NECTO – Núcleo de Ensino em Ciências de Toledo afeto ao CECE, sendo que este núcleo tem recebido aporte financeiro do PPGECEM por meio de materiais como: ar-condicionado,

televisor de 50", mesa digital, reforma de mesas e cadeiras, licença para software para análise de dados qualitativos de pesquisa (ATLAS.ti) entre outros.

O PPGECEM, como os demais programas de pós-graduação, exerce importante papel junto aos professores e acadêmicos do curso Química Licenciatura.

XV - DESCRIÇÃO DA EXTENSÃO

A necessidade de uma maior integração entre a Universidade e a comunidade é a principal motivação da relação "ensino-pesquisa-extensão". A extensão universitária é um processo educativo, cultural e científico articulado com o ensino e a pesquisa de forma indissociável, que viabiliza a relação transformadora entre a universidade e a sociedade. Os projetos de extensão trazem em seu bojo amplas possibilidades de trocas recíprocas entre os envolvidos (executores, clientela a quem se destinam, instituições envolvidas), revestindo-se de uma ampla função social. No caso da Licenciatura, a extensão cria uma ponte entre a Universidade e o setor produtivo e de serviços, com a integração plena de professores e acadêmicos em suas atividades profissionais, incentivando os acadêmicos a participar de projetos de interação com a comunidade.

Dentre as atividades de extensão, já em andamento ou com possibilidades futuras, destacam-se:

a) Instrumentação de Laboratórios de Ciências Naturais

Esta atividade teve como objetivo principal detectar as condições físicas dos laboratórios das escolas, identificando e quantificando os recursos materiais dos laboratórios e verificando se esses laboratórios estão sendo utilizados e de que forma. O estudo desses dados procurou subsidiar a proposição de desenvolvimento de material instrucional, para utilização em aulas experimentais de ciências, com a utilização dos recursos disponíveis nesses laboratórios ou outros materiais de baixo custo, de forma a permitir a realização de atividades experimentais nas escolas.

b) Núcleo de Ensino de Ciências de Toledo - NECTO

Com a criação do Núcleo de Ensino de Ciências de Toledo (NECTO) por meio da Resolução nº 017/2006-COU, constitui-se um espaço para a discussão de temas pertinentes ao Ensino em Ciências e Educação, voltados ao aprofundamento conceitual da área. Desde sua criação, o NECTO vem atuando na comunidade desenvolvendo projetos de ensino,

pesquisa e extensão interligados com serviço de prestação de serviço e inovação, abrangendo a temas sobre o Ensino de Ciências, Química e demais áreas das Ciências Exatas e Naturais.

Em 2022, com a Resolução nº 055/2021-COU, que estabeleceu os tipos de núcleos da UNIOESTE, o NECTO foi enquadrado como do Tipo I, Resolução nº 055/2022-COU, e um novo regimento está sendo elaborado para atender as demandas novas e aquelas já integrantes do plano de trabalho do NECTO.

Nestes anos de funcionamento, as atividades do NECTO são conduzidas por docentes que, além de exercerem a função de coordenadores, atuam em projetos de ensino, pesquisa, extensão, prestação de serviço e inovação. Faz parte das ações do NECTO dar suporte a vários projetos, destacamos alguns que são permanentes, como:

- Monitorias para a educação básica: este projeto tem como finalidade manter no NECTO um espaço para o atendimento de estudantes da educação básica que tenham dificuldade de aprendizagem ou interesse em aprofundar os conhecimentos na Química, Física e Matemática. O atendimento acontece no período da manhã e da tarde e está aberto à comunidade, não havendo necessidade de inscrição prévia, basta comparecer na sala do NECTO no horário afixado no mural e divulgado nas escolas.
- COMQUÍMICA das crianças: este projeto tem como objetivo inserir crianças na Ciência e, mais especificamente, inseri-las no conhecimento em Química, pois a escola, no nível fundamental de ensino, normalmente trabalha com assuntos voltados aos conhecimentos biológicos, deixando os conhecimentos da Química e da Física em último plano ou totalmente esquecidos. A ideia central é trazer as crianças para o interior da UNIOESTE, Campus de Toledo para realização de oficinas planejadas especialmente para este público. O projeto atua também na formação continuada de professores da educação básica ofertando cursos, oficinas, laboratório didático e inúmeras ações em prol do melhoramento do ensino de Ciências, da aprendizagem e da formação docente.
- Feira de Ciências de Toledo FECI-TOO: é um projeto organizado por docentes que desenvolvem diferentes atividades no NECTO. Este evento tem como objetivo promover a cultura científica, a divulgação e popularização da ciência, de modo a despertar o espírito científico nos jovens estudantes, mobilizando a comunidade geral a prestigiar do evento e conhecer um pouco mais sobre a função das feiras de ciências na aprendizagem e na alfabetização científica e tecnológica dos estudantes. A I FECI-TOO foi realizada em 2015,

a II FECI-TOO em 2017, a III FECI-TOO em 2019 e a IV FECI-TOO será realizada em 2022. Nas três edições já realizadas o projeto foi cadastrado na Pró-Reitora de Extensão com prazo determinado, para esta quarta edição o projeto se tornou permanente porque nosso objetivo é fazer com que a FECI-TOO faça parte do calendário das escolas do município de Toledo. O NECTO é o espaço em que as comissões científica, de divulgação, de infraestrutura e didático-pedagógica trabalham para organizar a feira.

- Educadores Químicos: Coletivos de Formação e Atuação: o Coletivo de Educadores Químicos tem como objetivo, reunir um grupo de docentes de Química, do Ensino Médio, de diferentes experiências e vivências, para debater e refletir juntos sobre suas ações de trabalho. O projeto pretende organizar, ao longo de dois anos, um Grupo de Estudos permanente, que reúna três grupos de Educadores Químicos: professores de Química em serviço, professores recém-formados atuantes ou não, acadêmicos do 3º e 4º ano do curso de Química-Licenciatura (das disciplinas de Prática de Estágio Supervisionado 1 e 2). Como metodologia de trabalho, realizaremos reuniões semanais da equipe de trabalho para organização e planejamento de atividades, bem como elaboração e alimentação do site. Quanto aos encontros, eventos, cursos, desenvolvidos com e para os Educadores Químicos participantes, estes serão realizados de acordo com as possibilidades de cada grupo, uma vez que teremos professores atuantes, estudantes de graduação... e nosso objetivo é integrar estas atividades às atividades escolares, das quais, os Educadores Químicos não podem se furtar a cumprir.
- Formação Inicial e Continuada de Professores Aproximando Universidade, Escola e Comunidade Escolar: a Teoria da Aprendizagem Significativa (TAS) é o principal referencial teórico adotado no desenvolvimento deste projeto de extensão e pesquisa, cujo objetivo é oferecer aos professores do Colégio Estadual Pato Bragado um espaço de formação continuada e aos acadêmicos do Curso de Química Licenciatura da Unioeste, participantes deste projeto, um espaço de formação complementar. A prática docente muitas vezes não privilegia a reflexão sobre o processo de ensino e aprendizagem, e muitas são as razões que justificam esta falta de reflexão, neste sentido explorar novos conhecimentos teóricos e metodológicos pode proporcionar aos participantes desse projeto um espaço de aprendizado que pode vir a melhorar o ensino e consequentemente a aprendizagem. Para contemplar nosso objetivo, o projeto será desenvolvido em sete etapas, sendo classificado como uma pesquisa educacional de abordagem qualitativa. As

contribuições desse projeto perpassam pelo conhecimento construído sobre o referencial teórico pelos participantes, o planejamento e o desenvolvimento de uma Unidade de Ensino Potencialmente Significativa (UEPS) com base neste referencial e a reflexão crítica dos resultados obtidos na UEPS. O espaço estabelecido durante o desenvolvimento desse projeto visa ampliar as possibilidades de aprendizagem, troca de experiências e conhecimentos de um grupo de professores e estudantes universitários e no trabalho de aproximação da universidade com a escola e a comunidade escolar do município de Pato Bragado/PR.

• Tabela Periódica para deficientes visuais: permitir a inclusão social aos alunos portadores de deficiência visual na área da educação, desenvolvendo materiais didáticos concretos para o ensino da química, facilitando assim sua compreensão e realmente gerando o aprendizado do assunto abordado. Este material é destinado às escolas Públicas da região Oeste do Paraná, com o intuito de posteriormente expandir a todo o Estado do Paraná e futuramente a todo o Brasil.

Além dos projetos permanentes, projetos por tempo determinado, iniciação científica voluntária, projetos de ensino, extensão, pesquisa entre outras também com o apoio do NECTO e em suas dependências, relacionamos apenas os títulos dos que estão em andamento em 2022:

- Clube de Ciências Novos Horizontes (Projeto).
- Programa de Iniciação de Bolsas de Iniciação à Docência (PIBID)
- PIBID Química Unioeste: Histórico e Conquistas (Projeto).
- Alfabetização Científica no Ensino de Química Estudo de Abordagens Didáticas (Projeto).
- Mapeamento do Alcance do Estágio Supervisionado de Química Licenciatura Unioeste
 23 anos (Projeto e Iniciação Científica Voluntária).
- Teses e Dissertações dos Programas de Pós-Graduação da Área de Ensino de Ciências do Paraná Estudos das Áreas de Pesquisa e de Formação dos Autores (Projeto e Iniciação Científica Voluntária).
- Química e Arte: Onde a Química e a Arte se encontram? (Iniciação Científica Voluntária)
- Revisão Sistemática sobre Saberes Populares relacionado ao Ensino de Química.
 (Iniciação Científica Voluntária)

- Saberes Populares, Ensino de Química e Unidades de Ensino Potencialmente Significativas (UEPS). (Iniciação Científica Voluntária)
- Feira de Ciências: estudo de revisão da literatura. (Iniciação Científica Voluntária)
 O NECTO, em sua estrutura física, possibilita espaço para as reuniões, orientações,
 estudos, defesas de monografias de Graduação e demais atividades acadêmicas. O Grupo
 de Estudos, Pesquisa e Investigação em Ensino de Ciências (GEPIEC) utiliza o espaço físico
 do NECTO para desenvolver suas atividades.

Para informações quanto ao trabalho do NECTO pode ser acessado em:

Página (https://www.unioeste.br/portal/nucleos-toledo/necto-toledo)

Instagram (https://linktr.ee/necto.unioeste@necto.unioeste)

Facebook (https://www.facebook.com/profile.php?id=100081286014565).

c) Semana acadêmica

As semanas acadêmicas têm por objetivo proporcionar a discussão de temas relevantes à área da Química e Ensino de Química, procurando integrar acadêmicos dos cursos de Bacharelado e Licenciatura, professores, funcionários e membros de outras Instituições de ensino superior. Essas semanas acontecem a cada dois anos, conforme programação acadêmica do curso e são organizadas por comissões constituídas por docentes e discentes do curso de Química.

d) Programa de Educação Tutorial - PETq

O curso de Química possui um grupo PETq Unioeste desde 2006. Nesse programa, os acadêmicos participantes (petianos), além de terem de apresentar bom rendimento acadêmico e dedicação exclusiva às atividades da universidade, desenvolvem atividades tanto no âmbito da pesquisa, ensino e extensão. Todas as atividades do grupo são supervisionadas por um tutor, que é um docente efetivo do curso. Uma das funções do grupo PETq é fomentar entre os colegas do curso, a importância da profissão, da pesquisa e extensão, oferecendo ao longo do ano minicursos, palestras sobre estas temáticas. O grupo PETq está sempre alinhado com a coordenação do curso, divulgando quando necessário, informações importantes aos acadêmicos. A existência de um grupo PETq nos cursos de Química Bacharelado e Licenciatura evidencia não só a alta qualidade do projeto em si, mas também dos docentes que dele fazem parte, refletindo na formação profissional dos acadêmicos.

e) PIBID Química - UNIOESTE

O Programa Institucional de Bolsas de Iniciação à Docência — PIBID é um programa da CAPES/MEC, que tem o objetivo de incentivar a formação de docentes da Educação Básica, por meio da concessão de bolsas para acadêmicos da licenciatura, professores das redes públicas e professores da universidade (coordenadores de área e coordenador institucional). O PIBID tem a finalidade de apoiar a formação de estudantes dos cursos de licenciatura e contribuir para elevar a qualidade da Educação Básica nas escolas públicas. (https://www.unioeste.br/portal/pibid-inicio).

Os projetos desenvolvidos pelo curso Química Licenciatura integram o Projeto Institucional da UNIOESTE como Subprojeto. Ao longo dos anos os subprojetos da Química são coordenados por professores efetivos da Química Licenciatura com formação em Química Licenciatura e pós-graduação em Educação ou Educação em Ciências. O trabalho de coordenação ocorre de forma colaborativa entre os professores com esta formação e visa proporcionar aos acadêmicos de licenciatura um espaço complementar de formação para a docência, além de expandir a integração e a troca de experiências entre educação básica e ensino superior.

O PIBID Química – UNIOESTE tem um *site*, nele constam as atividades desenvolvidas nas distintas edições:

https://pibidqunioeste.wixsite.com/pibidquimicaunioeste

Segue as especificações dos subprojetos desenvolvidos desde 2011.

PIBID 2011-2013

Esta foi a primeira edição em que o curso Química Licenciatura teve um subprojeto. Suas atividades iniciaram em junho de 2011 e seguiram até dezembro de 2013. Seu objetivo foi realizar atividades de docência na UNIOESTE e nas escolas por meio da produção de materiais didáticos para utilização nas escolas, reuniões de estudo e planejamento, reorganização dos laboratórios de Ciências e Química das escolas, elaboração de trabalhos com resultados das ações para apresentação em eventos da área entre outros. O Grupo PIBID Química atuou, em duas escolas da cidade de Toledo: Colégio Estadual Luiz Augusto Morais Rego e Colégio Estadual Senador Attílio Fontana. A coordenadora do projeto foi a Prof^a. Dr^a. Marcia Borin da Cunha e a Prof^a. Dr^a. Silvia Zamberlan Costa Beber atuou como colaboradora por um ano e meio.

PIBID 2014 - 2018

O início das atividades do grupo PIBID Química desta edição foi em 2014 permanecendo até o início de 2018. Seu objetivo foi realizar atividades de docência na UNIOESTE e nas escolas por meio de pesquisas e estudos dos principais referenciais teóricos e metodológicos da área de Ensino de Química e Ciências, produção de material didático, aulas utilizando distintas abordagens metodológicas, produção de peça de teatro voltada a Ciência, visitas técnicas, palestras, seminários, produção de artigos, relatos de experiência dos bolsistas com os resultados das ações para apresentação em eventos da área entre outras. O Grupo PIBID Química atuou em cinco escolas da cidade de Toledo: Colégio Estadual Senador Attílio Fontana, Colégio Estadual Jardim Gisele, Colégio Estadual Presidente Castelo Branco, Colégio Estadual Jardim Porto Alegre, Colégio Estadual Novo Horizonte. As coordenadoras do projeto foram as Prof^a. Dr^a. Rosana Franze Leite e Prof^a. Dr^a. Marcia Borin da Cunha.

PIBID 2020

Nesta edição as atividades do PIBID Química iniciaram em outubro de 2020 e seguiram até março de 2022. Cabe destacar que para esta edição o subprojeto foi planejado para que as ações ocorressem de forma presencial, mas com a pandemia causada pela Covid 19 o início do projeto institucional foi atrasado e algumas ações foram adaptadas, outra excluídas ou incluídas para seu desenvolvimento de forma remota. Seu objetivo foi realizar atividades de docência na UNIOESTE e nas escolas por meio da elaboração de materiais didáticos digitais como WebQuest, atividades Experimentais Investigativas, cards, oficinas sobre mapas conceituais, seminários, palestras, produção de materiais didático e atividades para estudantes especiais (autismo e surdez) e estudos dos principais referenciais teóricos e metodológicos da área de Ensino de Química e Ciências. O Grupo PIBID Química atuou em uma escola da cidade de Toledo: Colégio Estadual Jardim Gisele. As coordenadoras do projeto são as Profª. Drª. Silvia Zamberlan Costa Beber e Profª. Drª. Rosana Franzen Leite.

f) OBMEP

A OBMEP (Olimpíada Brasileira de Matemática das Escolas Públicas), promovida pelo MEC, MCTIC, IMPA e SBM, incentiva e financia a participação de estudantes de escolas públicas, premiados pela Olimpíada, nos Projetos de Iniciação Científica Júnior. As aulas do projeto são presencias e virtuais/síncronas ministradas por estudantes de licenciatura em matemática da UNIOESTE e UTFPR. Também, por meio remoto e presencial, a estudantes

do 6º ano ao 3º ano do ensino médio são ofertadas oficinas de resolução de problemas matemáticos, orientadas por professores da rede pública dos núcleos de Toledo, Cascavel e Foz do Iguaçu. Ambas as ações do projeto são coordenadas pelo professor Edson Carlos Licurgo Santos e sediadas na UNIOESTE de Toledo. A primeira edição da OBMEP ocorreu em 2005 e desde 2010 temos um polo de Iniciação Científica na UNIOESTE DE Toledo. A partir do ano 2016 a OBMEP está presente na UNIOESTE de Toledo sob coordenação regional de Iniciação Científica e a coordenação regional do programa OBMEP na Escola.

XVI - CORPO DOCENTE EXISTENTE E NECESSÁRIO

	TITULAÇÃO			
NOME DO DOCENTE	Graduação e Pós-graduação	Ano de	RT-	DISCIPLINAS
	Área de conhecimento da titulação	conclusão e		(listar as disciplinas ministradas
	(Descrever a área do título)	Instituição da	TIDE	pelo docente na atual proposta)
		última titulação		
				Química Inorgânica
Admiller to Dela Fedica	Graduado em: Química	DQI-UEM		Mineralogia
Adonilson dos Reis Freitas	Mestre em: Ciências	2010	4	Supervisão de Estágio
	Doutor em: Ciências (Química)			Orientação de Monografia de
				Graduação Química Analítica
	Graduado em: Química Licenciatura e			Química Analítica Química Analítica Instrumental
Cleber Antonio Lindino	Bacharelado	IQ-UFSCar	40	Supervisão de Estágio
Ciebei Antonio Lindino	Mestre em: Química Analítica Doutor em: Ciências (Química Analítica)	2001	40	Orientação de Monografia de
				Graduação de Monograna de Graduação
				Química Orgânica I
	Graduado em: Química Licenciatura e			Química orgânica II
				Laboratório de Química
	Bacharelado	10.11-1		Orgânica II
Conceição de Fátima Alves Olguin	Mestre em: Química Orgânica	IQ-Unicamp	40	Análise Orgânica Instrumental
, , , , , , , , , , , , , , , , , , ,	Doutor em: Ciências (Química Orgânica)	1998		Monografia de Graduação
	,			Supervisão de Estágio
				Orientação de Monografia de
				Graduação
				Fundamentos da Química I
Douglas Cardoso Dragusnki	Graduado em Química Bacharelado			Fundamentos da Química II
	Mestre em: Química	IQSC-USP	40	Físico-Química I
	Doutor em: Físico-Química	2003		Físico-Química II
	Douter of the Flores Quillion			Físico-Química III
				Supervisão de Estágio

				Orientação de Monografia de Graduação
Edson Carlos Licurgo Santos	Graduado em: Matemática Mestre em: Matemática Doutor em: Matemática	IMECC - Unicamp 2007	40	Matemática Básica Cálculo Diferencial e Integral I Cálculo Diferencial e Integral II Álgebra Linear Matrizes e Geometria Analítica
Elvio Antonio de Campos	Graduado em: Química Licenciatura e Bacharelado Mestre em: Química Aplicada Doutor em: Ciências (Química Inorgânica) Pós-doutorado: Engenharia de Materiais	Universidade de Aveiro-Portugal 2014	40	Fundamentos da Química I Química Inorgânica I Química Inorgânica II Laboratório de Química Inorgânica II Supervisão de Estágio Orientação de Monografia de Graduação
Flávia Giovana Manarin	Graduado em: Química Licenciatura Mestre em: Química Orgânica Doutor em: Química Orgânica Pós-doutorado: Síntese Orgânica	FCF-USP 2011	40	Química Orgânica I Química orgânica II Laboratório de Química Orgânica I Análise Orgânica Instrumental Laboratório de Química Orgânica II Supervisão de Estágio Orientação de Monografia de Graduação
Josiane Caetano Dragunski	Graduado em: Química Bacharelado Mestre em: Química Aplicada Doutor em: Química Analítica	IQSC-USP 2007	40	Química Analítica Química Analítica Instrumental Laboratório de Química Analítica Supervisão de Estágio Orientação de Monografia de Graduação

Leonardo S. Guillermo Felipe	Graduado em: Matemática Mestre em: Matemática	ICMC-São Carlos - USP 1994	40	Matemática Básica Cálculo Diferencial e Integral I Cálculo Diferencial e Integral II Álgebra Linear
Luciana Gaffo Freitas	Graduado em: Química Bacharelado Mestre em: Química Doutor em: Ciência e Engenharia de Materiais	USP/SP - 2002	40	Química Inorgânica I Química Inorgânica II Laboratório de Química Inorgânica I Laboratório de Química Inorgânica II Supervisão de Estágio Orientação de Monografia de Graduação
Marcos Freitas de Moraes	Graduado em: Matemática Licenciatura Mestre em: Matemática Doutor em: Matemática	UFPR 2013	40	Matemática Básica Cálculo Diferencial e Integral I Cálculo Diferencial e Integral II Álgebra Linear Matrizes e Geometria Analítica
Maria Luiza Fernandes Rodrigues	Graduado em: Química Licenciatura Mestre em: Química Doutor em: Química	UFPR 2007	40	Fundamentos da Química I Fundamentos da Química II Laboratório de Fundamentos da Química I Química Orgânica I Bioquímica Supervisão de Estágio Orientação de Monografia de Graduação
Maurício Ferreira da Rosa	Graduado em: Química Bacharelado Mestre em: Química Orgânica Doutor em: Ciências (Química Orgânica)	IQ-UFRJ 1999	40	Química Orgânica I Química Orgânica II Laboratório de Química Orgânica II Análise Orgânica Instrumental Bioquímica

Jaidilli Olliveisitailo OEF 00010-110 Gascavei		1	l .	0
				Supervisão de Estágio Orientação de Monografia de
				Graduação
Olga Maria Schimidt Ritter	Graduado em: Química Licenciatura Mestre em: Química Orgânica Doutor em: Química Orgânica	UFRGS 2005	40	Química Orgânica I Química Orgânica II Laboratório de Química Orgânica I Laboratório de Química Orgânica II Análise Orgânica Instrumental Monografia Supervisão de Estágio Orientação de Monografia de Graduação
Reinaldo Aparecido Bariccatti	Graduado em: Química Bacharelado Mestre em: Físico-Química Doutor em: Ciências (Físico-Química)	IQ-Unicamp 1998	40	Fundamentos da Química I Fundamentos da Química II Físico-Química I Físico-Química II Supervisão de Estágio Orientação de Monografia de Graduação
Rosemeire Ap. da Silva de Lucca	Graduado em: Física Bacharelado Mestre em: Ciências (Física) Doutor em: Ciências (Físico-Química)	USP-SP 1999	40	Física Geral II Física Geral III Física Geral III Física Experimental
Rosana Franzen Leite	Graduado em: Química Licenciatura Mestre em: Educação para a Ciência e o Ensino de Matemática Doutor em: Educação para a Ciência e a Matemática	UEM-PR 2015	40	Metodologia para o Ensino de Química Instrumentação para o Ensino de Química Prática de Ensino e Estágio Supervisionado I Prática de Ensino e Estágio Supervisionado II

Jardim Universitario CEP 85819-110 Cascavel/	PR Brasil			
				Didática das Ciências I e II Química e Educação Ambiental Química e Educação Formal Ensino de Ciências e Formação docente Supervisão de Estágio Orientação de Monografia de Graduação Física Geral I
Sandro Fernando Stolf	Graduado em: Física Bacharelado Mestre em: Física Doutor em: Ciências	IPEN-USP 2003	40	Física Geral II Física Geral III Física Geral III Física Experimental
Silvia Zamberlan Costa Beber	Graduado em: Química Licenciatura Mestre em: Educação Doutora em Educação em Ciências (UFRGS)	UFRGS-RS 2018	40	Metodologia para o Ensino de Química Instrumentação para o Ensino de Química Prática de Ensino e Estágio Supervisionado I Prática de Ensino e Estágio Supervisionado II Didática das Ciências I e II Química e Educação Ambiental Química e Educação Formal Supervisão de Estágio Orientação de Monografia de Graduação
Silvia Denofre de Campos	Graduado em: Química Licenciatura e Bacharelado Mestre em: Química Inorgânica Doutor em: Ciências (Química Inorgânica) Pós-doutorado: Engenharia de Materiais	Universidade de Aveiro-Portugal 2014	40	Química Inorgânica I Química Inorgânica II Laboratório de Química Inorgânica I Laboratório de Química Inorgânica II Supervisão de Estágio

Januari direcistano i del dodes-120 i dascar				Orientação de Monografia de Graduação
Soraya Moreno Palácio	Graduado em: Química Licenciatura Mestre em: Química Analítica Doutor em: Química Analítica	UEM 2009	40	Química Analítica Química Analítica Instrumental Supervisão de Estágio Orientação de Monografia de Graduação
Valderi Pacheco dos Santos	Graduado em: Química Licenciatura Mestre em: Físico-Química Doutor em: Ciências (Físico-Química)	IQSC-USP 2005	40	Físico-Química I Físico-Química II Físico-Química III Laboratório de Físico-Química Supervisão de Estágio Orientação de Monografia de Graduação
Docentes de Outros Centros				Libras Políticas Públicas Psicologia
A contratar	Graduado em Química Licenciatura Mestre em: Educação ou Ensino de Ciências; Educação, Química em linha/concentração em Ensino de Química. Doutor em: Educação ou Ensino de Ciências; Educação		40	Metodologia para o Ensino de Química Prática de Ensino e Estágio Supervisionado I Prática de Ensino e Estágio Supervisionado II Didática das Ciências Didática da Química Química e Educação Ambiental Química e Educação Formal Supervisão de Estágio Pesquisa em Educação História e Filosofia para o Ensino de Química
A contratar (04)	Graduado em Química Mestre em: Química		40	Química Analítica Química Analítica Instrumental

Jaiumi Universitano CEF 00010-110 Cascavi					
	Doutor em: Química		Laboratório de Fundamentos da		
			Química I		
			Laboratório de Fundamen	tos da	
			Química II		
			Laboratório de Qi	uímica	
			Orgânica I		
			Química Inorgânica I		
				uímica	
			Inorgânica I		
			Laboratório de Qi	uímica	
			Inorgânica II		
			Fundamentos da Química	. [
	Graduado em Física		Física Geral I		
A contratar	Mestre em:	40	Física Geral II		
A contratai	Doutor em: Física	40	Física Geral III		
	Doutor Gill. I 1510a		Física Experimental		

Observações:

- * Os professores do Quadro de docentes da Química também participam de atividades acadêmicas do curso de Química Bacharelado e/ou outros cursos de graduação do CECE-Toledo, além de alguns deles participarem de programas de pós-graduação stricto sensu.
- * Na coluna referente às disciplinas, foram alocadas todas as disciplinas que os professores poderão ministrar.
- * O curso conta atualmente com 06 professores colaboradores RT 40 na área de Química e 01 professor colaborador RT 40 na área de Educação em Química

RESUMO QUANTITATIVO DE DOCENTES PELA ÚLTIMA TITULAÇÃO:

Graduados: Especialistas: Mestres:1 Doutores: 21

Pós Doutores: 5

TOTAL: 25

XVII - RECURSOS EXISTENTES E NECESSÁRIOS:

A) RECURSOS HUMANOS PARA ADMINISTRAÇÃO DO CURSO - TÉCNICOS E DOCENTES:

1- Recursos humanos existentes

Hoje o curso conta com 15 professores efetivos da área de Química e 02 da área de Ensino de Química, sendo todos 17 doutores e 05 fizeram também pós-doutorado. Além disso, temos 05 professores das áreas de matemática e física que são vinculados ao Centro de Engenharia e Ciências Exatas (CECE), 08 colaboradores, sendo 07 RT40 e 1 RT24 e 03 professores de outros centros, conforme discriminado no item XVIII. Com relação aos servidores técnicos administrativos, a coordenação conta com um servidor administrativo e um estagiário que atende meio período diurno e meio período noturno. Quanto aos laboratórios, contamos com 2 (dois) técnicos de nível superior 2, uma auxiliar técnica e uma estagiária. Os técnicos atendem a todos os quatro cursos do Centro de Engenharias e Ciências Exatas e quanto aos estagiários, apenas um atende ao período noturno.

2- Recursos humanos necessários

O corpo docente discriminado no item XVIII (Corpo Docente Existente e Necessário) para atender a demanda do curso de Química Licenciatura, Química Bacharelado (02 professores da área de Educação em Química, 06 professores para atender as áreas básicas de Química e 01 professor para atender as disciplinas de Física). A demanda por docentes lotados em Outros Centros que não o Centro de Engenharias e Ciências Exatas - CECE de Toledo, também é contemplada. No entanto, essas demandas devem ser gerenciadas pelos Centros de lotação do docente e devem estar previstas na carga horária total daquele Centro. Da mesma forma, as disciplinas da área de Física e de Matemática, que igualmente devem ser gerenciadas pelo CECE, levando-se em conta a previsão feita em cada um dos Projetos Políticos Pedagógicos dos cursos que pertençam a este Centro. Atualmente o Centro de Engenharias e Ciências Exatas do campus de Toledo conta com 3 docentes efetivos da área de Matemática e 3 docentes da área de Física. As cargas horárias previstas para as disciplinas destas áreas estão explícitas nesta proposta pedagógica. Elas devem ser equacionadas e gerenciadas, juntamente com as demandas dos outros cursos, pelo CECE, campus de Toledo.

Com relação a servidores técnico-administrativos, existe a necessidade de 1 (um) servidor administrativo na secretaria da coordenação do curso, e 4 (quatro) técnicos nos

laboratórios de ensino, que atualmente são 2 (dois) de Química e 1 (um) de Física. Para atender à demanda atual seria necessário um técnico por laboratório.

B) RECURSOS FÍSICOS:

1- Recursos físicos existentes

O campus de Toledo ocupa uma área de 32.550 m². Sua área construída é de 6.383,26m² distribuídos entre 8 prédios, sendo que já estão projetados mais 7.729 m², visando a ampliação do campus. Este conta em sua infraestrutura com um auditório com capacidade para 137 lugares, equipado com recursos de som e imagem. Neste campus, a área de Química dispõe de quatro (04) laboratórios, que na época de implantação do curso de Engenharia Química foram denominados Laboratório de Química Geral, Laboratório de Química Analítica, Laboratório de Química Orgânica e Laboratório de Físico-Química. Essa estrutura permite o funcionamento das aulas laboratoriais com grupos de 15 a 16 acadêmicos. A atual estrutura desses laboratórios comporta 4 bancadas centrais para experimentos de Química, além das bancadas laterais de apoio, nas quais são guardados reagentes e vidrarias.

Há no Campus de Toledo cerca de 80 salas de aula que comportam em média 45 acadêmicos, estando disponíveis para 8 cursos oferecidos no campus, ocorrendo dificuldade para turmas com um número maior de alunos.

2- Recursos físicos necessários

Dadas as características do curso de Química e suas necessidades práticas e teóricas, é necessário um grande espaço físico laboratorial, não só para os cursos de Química Licenciatura e Bacharelado, mas também para os demais cursos existentes no campus, que precisem da Química como matéria básica. Para atender a essa demanda, faz-se necessária uma estrutura que forneça ao acadêmico condições ideais de segurança, tendo em vista que os laboratórios atuais apresentam grande carência de espaço físico e condições seguras de trabalho.

Há de fato, a necessidade de construção de um novo prédio para o Curso de Química que contemple um conjunto de laboratórios necessários para o bom funcionamento do curso, com as devidas saídas de emergência, iluminação e circulação de ar natural adequada, evitando qualquer contaminação e mal-estar devido aos gases e substâncias insalubres a que os estudantes são expostos em algumas práticas. Um espaço físico reservado para os laboratórios de Instrumentação para o Ensino de Química, Fundamentos da Química, Físico-ANEXO DA RESOLUÇÃO Nº 030/2023-CEPE, de 30 de março de 2023.

Química, Química Analítica, Química Inorgânica, Química Orgânica, Bioquímica e Química Analítica Instrumental, disciplinas características do curso de Química, bem como de outros cursos pertencentes ao CECE. Enquanto o Campus e o Curso não conseguem verbas para a construção de um novo e adaptado prédio para a as demandas de um Curso de Química, está em andamento um projeto de reforma parcial do espaço já existente afim de adequá-lo dentro das normas de segurança exigidas. Essas reformas deverão ter início no final de 2022.

C) RECURSOS MATERIAIS P/ ADMINISTRAÇÃO DO CURSO:

1- Recursos materiais existentes

Atualmente a secretaria da coordenação do curso dispõe de um armário de aço, escaninho dos professores, duas escrivaninhas e dois computadores, sendo um desses conectado a uma ilha de impressão e o outro a uma impressora simples. Esses computadores atendem às necessidades dos cursos de Licenciatura e Bacharelado em Química, além dos professores dos dois cursos, para impressões de provas e documentos. A sala da coordenação é refrigerada por ar-condicionado *split* e possui boa iluminação natural e artificial.

D) RECURSOS BIBLIOGRÁFICOS:

1- Recursos bibliográficos existentes

A biblioteca do campus de Toledo possui um acervo de mais de 25.000 títulos, abrangendo diversas áreas. Nas áreas de exatas e educação há: 118 títulos em Química, com 296 volumes (Área 540); 123 títulos em Física, com 228 volumes (Área 530); 297 títulos em Matemática, com 467 volumes (Área 510); 47 títulos em Estatística, com 73 volumes (Área 310); 237 títulos em Computação, com 285 volumes (Área 004); 1.209 títulos em Educação, com 1700 volumes (Área 370); 294 títulos em Tecnologia/Engenharia /Produção com 523 volumes (Áreas 600/620/660/670/680/690).

2- Recursos bibliográficos necessários

Com a implantação do novo PPP, futuramente será necessária a aquisição de novos títulos, importantes para o bom funcionamento do curso. A listagem abaixo direciona as futuras aquisições da área de Química.

Título da Obra	Autores	Exemplares
Área de Química Analítica Métodos Cromatográf	icos	
Cromatografia: Princípios Básicos e Técnicas Afins	Aquino Neto	3
Fundamentos da Cromatografia a Líquido de Alto	Ciola	3
Desempenho		
Basic Gas Chromatography: Techniques In Analytical	McNair	1
Chemistry		
Chromatographic Separation Based on Molecular	Jinno	1
Recognition		
Gas Chromatography	Bruner	1
CG/MS	MacMaster	1
HPLC:Practical And Industry Chromatography	Swadesh	1
HPLC: a Practical Guide	Hanai	1
Head-Space Anlysis & Related Methods Gas	loffe	1
Chromatography		
Analytical Gas Chromatography	Jennings	1
Molecular Bases of Chromatographic Separation	Forgacs	1
Practical Capillary Electrophoresis	Weinberger	1
Capillary Electrochromatography	Bartle	1
Introdução A Cromatografia Com Enfase Em Material	Siqueira	1
Eletroanalítica	1	•
Cyclic Voltammetry	Gosser	2
Electrochemistry for Chemists	Sobkowiak	2
Electroanalytical Methods	Scholz	1
Analytical Electrochemistry	Wang	1
Adsorption Molecules Metal Electrodes	Lipkowski	1
Advances in Electrochemical Science & Engineering	Alkire	1
Química Ambienta	1	1
Química Analítica Ambiental	Luna	2
Chemometrics Environmental Analysis	Heineman	1
Extraction Methods for Environmental Analysis	Dean	1

Hazardous Wastes Chemical Process Safety Crowl & Louvar Air Monitoring by Spectroscopy Techniques Sigrist 1 Agrochemicals Cremlyn 2 Química Ambiental Baird 1 Introdução À Química Ambiental Rocha et al. 3 Herbicidas Em Alimentos Midio 2 Environmental Analytical Chemistry Fifield & Haines 1 Analyses of Hazardous Substances In: Air Analytical Chemistry of Pobs Erickson 1 Agrochemical & Pesticide Safety Handbook Waxman 1 Applications of Environmental Chemistry: Practical Guide for Enviromental Pesticide Residue In Foods: methods Techniques & Regulations Pesticides In Fruits & Vegetables Aerosol Chemical Processes In: Polluted Atmospheres Reviews of Environmental Contamination & Toxicology Climate-Biosphere Interactions Introdução a Engenharia Ambiental Braga et alli Industrial Ecology Environmental Chemistry Aquatic Chemistry Stumm Principles of Aquatic Chemistry Introdução Aquatic Chemistry Aquatic Chemistry Principles of Aquatic Chemistry: a Laboratory Manual Química Analítica Instrumental Química Analítica Instrumental Química Analítica Instrumental Química Analítica Instrumental Andrade, Godinho & Baccan Analytical Chemistry Fifield & Kealey 2	Environmental Fate of Pesticides	Richter	1			
Air Monitoring by Spectroscopy Techniques Agrochemicals Química Ambiental Introdução À Química Ambiental Herbicidas Em Alimentos Environmental Analytical Chemistry Analyses of Hazardous Substances In: Air Analytical Chemistry of Pcbs Agrochemical & Pesticide Safety Handbook Applications of Environmental Chemistry: Practical Guide for Enviromental Pesticide Residue In Foods: methods Techniques & Regulations Pesticides In Fruits & Vegetables Aerosol Chemical Processes In: Polluted Atmospheres Reviews of Environmental Contamination & Toxicology Climate-Biosphere Interactions Introdução a Engenharia Ambiental Braga et alli 2 Industrial Ecology Environmental Chemistry Basic Concepts of Environmental Chemistry Aquatic Chemistry Yeniciples of Aquatic Chemistry Drinking Water Chemistry: a Laboratory Manual Química Analítica Instrumental Química Analítica Instrumental Química Analítica Instrumental Andrade, Godinho & Baccan	Hazardous Wastes	Watts	2			
Agrochemicals Química Ambiental Baird 1 Introdução À Química Ambiental Rocha et al. 3 Herbicidas Em Alimentos Midio 2 Environmental Analytical Chemistry Fifield & Haines 1 Analyses of Hazardous Substances In: Air Kettrup 1 Analytical Chemistry of Pcbs Erickson 1 Applications of Environmental Chemistry: Practical Guide for Enviromental Pesticide Residue In Foods: methods Techniques & Regulations Pesticides In Fruits & Vegetables Aerosol Chemical Processes In: Polluted Atmospheres Reviews of Environmental Contamination & Toxicology Ware 1 Climate-Biosphere Interactions Introdução a Engenharia Ambiental Braga et alli 2 Industrial Ecology Environmental Chemistry Basic Concepts of Environmental Chemistry Stumm 2 Principles of Aquatic Chemistry Laboratory Manual Química Analítica Instrumental Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Chemical Process Safety	Crowl & Louvar	1			
Química Ambiental Baird 1 Introdução À Química Ambiental Rocha et al. 3 Herbicidas Em Alimentos Midio 2 Environmental Analytical Chemistry Fifield & Haines 1 Analyses of Hazardous Substances In: Air Kettrup 1 Analytical Chemistry of Pcbs Erickson 1 Agrochemical & Pesticide Safety Handbook Waxman 1 Applications of Environmental Chemistry: Practical Weiner 1 Guide for Enviromental Pesticide Residue In Foods: methods Techniques & Fong 1 Regulations Pesticides In Fruits & Vegetables Kegley 1 Aerosol Chemical Processes In: Polluted Atmospheres Spurny 1 Reviews of Environmental Contamination & Toxicology Ware 1 Climate-Biosphere Interactions Zepp 1 Introdução a Engenharia Ambiental Braga et alli 2 Industrial Ecology Environmental Chemistry & Manahan 1 Hazardous Waste Basic Concepts of Environmental Chemistry Connell 1 Aquatic Chemistry Stumm 2 Principles of Aquatic Chemistry: a Laboratory Manual Hauser 1 Química Analítica Instrumental Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Air Monitoring by Spectroscopy Techniques	Sigrist	1			
Introdução À Química Ambiental Rocha et al. 3 Herbicidas Em Alimentos Midio 2 Environmental Analytical Chemistry Fifield & Haines 1 Analyses of Hazardous Substances In: Air Kettrup 1 Analytical Chemistry of Pcbs Erickson 1 Agrochemical & Pesticide Safety Handbook Waxman 1 Applications of Environmental Chemistry: Practical Weiner 1 Guide for Enviromental Pesticide Residue In Foods: methods Techniques & Fong 1 Regulations Pesticides In Fruits & Vegetables Kegley 1 Aerosol Chemical Processes In: Polluted Atmospheres Spurny 1 Reviews of Environmental Contamination & Toxicology Ware 1 Climate-Biosphere Interactions Zepp 1 Introdução a Engenharia Ambiental Braga et alli 2 Industrial Ecology Environmental Chemistry & Manahan 1 Hazardous Waste Basic Concepts of Environmental Chemistry Connell 1 Aquatic Chemistry Stumm 2 Principles of Aquatic Chemistry a Laboratory Manual Hauser 1 Química Analítica Instrumental Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Agrochemicals	Cremlyn	2			
Herbicidas Em Alimentos Midio 2 Environmental Analytical Chemistry Fifield & Haines 1 Analyses of Hazardous Substances In: Air Kettrup 1 Analytical Chemistry of Pcbs Erickson 1 Agrochemical & Pesticide Safety Handbook Waxman 1 Applications of Environmental Chemistry: Practical Guide for Enviromental Pesticide Residue In Foods: methods Techniques & Fong 1 Regulations Pesticides In Fruits & Vegetables Kegley 1 Aerosol Chemical Processes In: Polluted Atmospheres Spurny 1 Reviews of Environmental Contamination & Toxicology Ware 1 Climate-Biosphere Interactions Zepp 1 Introdução a Engenharia Ambiental Braga et alli 2 Industrial Ecology Environmental Chemistry & Manahan 1 Hazardous Waste Basic Concepts of Environmental Chemistry Connell 1 Aquatic Chemistry Stumm 2 Principles of Aquatic Chemistry a Laboratory Manual Hauser 1 Química Analítica Instrumental Química Analítica Instrumental Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Química Ambiental	Baird	1			
Environmental Analytical Chemistry Analyses of Hazardous Substances In: Air Kettrup 1 Analytical Chemistry of Pcbs Erickson 1 Agrochemical & Pesticide Safety Handbook Waxman 1 Applications of Environmental Chemistry: Practical Guide for Environmental Pesticide Residue In Foods: methods Techniques & Regulations Pesticides In Fruits & Vegetables Aerosol Chemical Processes In: Polluted Atmospheres Reviews of Environmental Contamination & Toxicology Reviews of Environmental Contamination & Toxicology Uare 1 Climate-Biosphere Interactions Introdução a Engenharia Ambiental Braga et alli 2 Industrial Ecology Environmental Chemistry & Manahan 1 Hazardous Waste Basic Concepts of Environmental Chemistry Stumm 2 Principles of Aquatic Chemistry Drinking Water Chemistry: a Laboratory Manual Hauser 1 Química Analítica Instrumental Química Analítica Instrumental Andrade, Godinho & Baccan	Introdução À Química Ambiental	Rocha et al.	3			
Analyses of Hazardous Substances In: Air Kettrup 1 Analytical Chemistry of Pcbs Erickson 1 Agrochemical & Pesticide Safety Handbook Waxman 1 Applications of Environmental Chemistry: Practical Weiner 1 Guide for Environmental Pesticide Residue In Foods: methods Techniques & Fong 1 Regulations Fruits & Vegetables Kegley 1 Aerosol Chemical Processes In: Polluted Atmospheres Spurny 1 Reviews of Environmental Contamination & Toxicology Ware 1 Climate-Biosphere Interactions Zepp 1 Introdução a Engenharia Ambiental Braga et alli 2 Industrial Ecology Environmental Chemistry & Manahan 1 Hazardous Waste Basic Concepts of Environmental Chemistry Connell 1 Aquatic Chemistry Stumm 2 Principles of Aquatic Chemistry Analal Hauser 1 Química Analítica Instrumental Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Herbicidas Em Alimentos	Midio	2			
Analytical Chemistry of Pcbs Agrochemical & Pesticide Safety Handbook Applications of Environmental Chemistry: Practical Guide for Environmental Pesticide Residue In Foods: methods Techniques & Fong Regulations Pesticides In Fruits & Vegetables Aerosol Chemical Processes In: Polluted Atmospheres Reviews of Environmental Contamination & Toxicology Climate-Biosphere Interactions Introdução a Engenharia Ambiental Braga et alli 2 Industrial Ecology Environmental Chemistry & Manahan 1 Hazardous Waste Basic Concepts of Environmental Chemistry Aquatic Chemistry Principles of Aquatic Chemistry Drinking Water Chemistry: a Laboratory Manual Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Environmental Analytical Chemistry	Fifield & Haines	1			
Agrochemical & Pesticide Safety Handbook Applications of Environmental Chemistry: Practical Guide for Environmental Pesticide Residue In Foods: methods Techniques & Regulations Pesticides In Fruits & Vegetables Aerosol Chemical Processes In: Polluted Atmospheres Reviews of Environmental Contamination & Toxicology Reviews of Environmental Contamination & Toxicology Ware 1 Climate-Biosphere Interactions Introdução a Engenharia Ambiental Braga et alli 2 Industrial Ecology Environmental Chemistry & Manahan 1 Hazardous Waste Basic Concepts of Environmental Chemistry Connell 1 Aquatic Chemistry Stumm 2 Principles of Aquatic Chemistry: a Laboratory Manual Hauser 1 Química Analítica Instrumental Química Analítica Instrumental Andrade, Godinho & Baccan	Analyses of Hazardous Substances In: Air	Kettrup	1			
Applications of Environmental Chemistry: Practical Guide for Enviromental Pesticide Residue In Foods: methods Techniques & Fong Regulations Pesticides In Fruits & Vegetables Rerosol Chemical Processes In: Polluted Atmospheres Reviews of Environmental Contamination & Toxicology Ware 1 Climate-Biosphere Interactions Introdução a Engenharia Ambiental Braga et alli 2 Industrial Ecology Environmental Chemistry & Manahan 1 Hazardous Waste Basic Concepts of Environmental Chemistry Connell 1 Aquatic Chemistry Stumm 2 Principles of Aquatic Chemistry: a Laboratory Manual Hauser 1 Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Analytical Chemistry of Pcbs	Erickson	1			
Guide for Enviromental Pesticide Residue In Foods: methods Techniques & Fong 1 Regulations Pesticides In Fruits & Vegetables Kegley 1 Aerosol Chemical Processes In: Polluted Atmospheres Spurny 1 Reviews of Environmental Contamination & Toxicology Ware 1 Climate-Biosphere Interactions Zepp 1 Introdução a Engenharia Ambiental Braga et alli 2 Industrial Ecology Environmental Chemistry & Manahan 1 Hazardous Waste Basic Concepts of Environmental Chemistry Connell 1 Aquatic Chemistry Stumm 2 Principles of Aquatic Chemistry: a Laboratory Manual Hauser 1 Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Agrochemical & Pesticide Safety Handbook	Waxman	1			
Pesticide Residue In Foods: methods Techniques & Fong 1 Regulations Pesticides In Fruits & Vegetables Kegley 1 Aerosol Chemical Processes In: Polluted Atmospheres Spurny 1 Reviews of Environmental Contamination & Toxicology Ware 1 Climate-Biosphere Interactions Zepp 1 Introdução a Engenharia Ambiental Braga et alli 2 Industrial Ecology Environmental Chemistry & Manahan 1 Hazardous Waste Basic Concepts of Environmental Chemistry Connell 1 Aquatic Chemistry Stumm 2 Principles of Aquatic Chemistry Andred Hauser 1 Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Applications of Environmental Chemistry: Practical	Weiner	1			
Regulations Pesticides In Fruits & Vegetables Aerosol Chemical Processes In: Polluted Atmospheres Reviews of Environmental Contamination & Toxicology Reviews of Environmental Contamination & Toxicology Ware 1 Climate-Biosphere Interactions Introdução a Engenharia Ambiental Braga et alli 2 Industrial Ecology Environmental Chemistry & Manahan 1 Hazardous Waste Basic Concepts of Environmental Chemistry Connell 1 Aquatic Chemistry Stumm 2 Principles of Aquatic Chemistry Morel 2 Drinking Water Chemistry: a Laboratory Manual Hauser 1 Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Guide for Enviromental					
Pesticides In Fruits & Vegetables Aerosol Chemical Processes In: Polluted Atmospheres Spurny 1 Reviews of Environmental Contamination & Toxicology Climate-Biosphere Interactions Introdução a Engenharia Ambiental Industrial Ecology Environmental Chemistry & Hazardous Waste Basic Concepts of Environmental Chemistry Connell Aquatic Chemistry Stumm 2 Principles of Aquatic Chemistry Morel 2 Drinking Water Chemistry: a Laboratory Manual Ruímica Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Pesticide Residue In Foods: methods Techniques &	Fong	1			
Aerosol Chemical Processes In: Polluted Atmospheres Spurny 1 Reviews of Environmental Contamination & Toxicology Ware 1 Climate-Biosphere Interactions Zepp 1 Introdução a Engenharia Ambiental Braga et alli 2 Industrial Ecology Environmental Chemistry & Manahan 1 Hazardous Waste Basic Concepts of Environmental Chemistry Connell 1 Aquatic Chemistry Stumm 2 Principles of Aquatic Chemistry Morel 2 Drinking Water Chemistry: a Laboratory Manual Hauser 1 Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Regulations					
Reviews of Environmental Contamination & Toxicology Climate-Biosphere Interactions Introdução a Engenharia Ambiental Industrial Ecology Environmental Chemistry & Manahan Hazardous Waste Basic Concepts of Environmental Chemistry Connell Aquatic Chemistry Stumm Principles of Aquatic Chemistry Aquatic Chemistry: a Laboratory Manual Morel Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Pesticides In Fruits & Vegetables	Kegley	1			
Climate-Biosphere Interactions Zepp Introdução a Engenharia Ambiental Braga et alli Industrial Ecology Environmental Chemistry & Manahan Hazardous Waste Basic Concepts of Environmental Chemistry Connell Aquatic Chemistry Stumm Principles of Aquatic Chemistry Morel Drinking Water Chemistry: a Laboratory Manual Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Aerosol Chemical Processes In: Polluted Atmospheres	Spurny	1			
Introdução a Engenharia Ambiental Braga et alli 2 Industrial Ecology Environmental Chemistry & Manahan 1 Hazardous Waste Basic Concepts of Environmental Chemistry Connell 1 Aquatic Chemistry Stumm 2 Principles of Aquatic Chemistry Morel 2 Drinking Water Chemistry: a Laboratory Manual Hauser 1 Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Reviews of Environmental Contamination & Toxicology	Ware	1			
Industrial Ecology Environmental Chemistry & Manahan 1 Hazardous Waste Basic Concepts of Environmental Chemistry Connell 1 Aquatic Chemistry Stumm 2 Principles of Aquatic Chemistry Morel 2 Drinking Water Chemistry: a Laboratory Manual Hauser 1 Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan 3	Climate-Biosphere Interactions	Zepp	1			
Hazardous Waste Basic Concepts of Environmental Chemistry Aquatic Chemistry Principles of Aquatic Chemistry Drinking Water Chemistry: a Laboratory Manual Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Introdução a Engenharia Ambiental	Braga et alli	2			
Basic Concepts of Environmental Chemistry Aquatic Chemistry Principles of Aquatic Chemistry Drinking Water Chemistry: a Laboratory Manual Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Industrial Ecology Environmental Chemistry &	Manahan	1			
Aquatic Chemistry Principles of Aquatic Chemistry Morel 2 Drinking Water Chemistry: a Laboratory Manual Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Hazardous Waste					
Principles of Aquatic Chemistry Drinking Water Chemistry: a Laboratory Manual Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Basic Concepts of Environmental Chemistry	Connell	1			
Drinking Water Chemistry: a Laboratory Manual Hauser 1 Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho & Baccan	Aquatic Chemistry	Stumm	2			
Química Analítica Instrumental Química Analítica Quantitativa Elementar Andrade, Godinho Baccan	Principles of Aquatic Chemistry	Morel	2			
Química Analítica Quantitativa Elementar Andrade, Godinho Baccan	Drinking Water Chemistry: a Laboratory Manual	Hauser	1			
& Baccan	Química Analítica Instrumental					
	Química Analítica Quantitativa Elementar	Andrade, Godinho	3			
Analytical Chemistry Fifield & Kealey 2		& Baccan				
	Analytical Chemistry	Fifield & Kealey	2			

Chemical Experiments for Instrumental Methods	van Eldik	2
Instrumental Methods of Analysis	Willard	2
Introduction to Analytical Atomic Spectroscopy	Evans	1
Handbook Of Instrumental Techniques For	Settle	1
Analyt.Chemistry		
Modern Analytical Chemistry	Harvey	1
Analytical Chemistry Practice	Kennedy	1
Analytical Chemistry Principles	Kennedy	1
Inductively Coupled Plasmas In: Analyitical Atomic	Montaser	1
Spectrometry		
Visible & Ultraviolet Spectroscopy	Thomas	2
Atomic Absorption And Plasma Spectroscopy	Dean & Ando	1
Determination of Trace Elements	Alfassi	1
Modern Methods for Trace Element	Vandecasteele	2
Analisis por injeccion in flujo	Valcarcel	2
Flow Injection Analysis	Ruzicka	2
Extração Em Fase Solida (SPE)	Lanças	1
Analytical Solid-phase Extraction	Fritz	1
Solid Phase Microextraction: Theory and Practice	Pawliszyn	2
Solid State Chemistry Techniques	Cheetham et al.	1
Chromatography for Inorganic Chemistry	Lederer	1
Analytical Chemistry of Carbohydrates	Scherz	1
Analytical Chemistry of Macrocyclic & Supramolecular	Khopkar	1
Compounds		
Art and Science of Chemical Analysis	Enke	1
Thermal Methods	Dodd et alli.	1
Microscopic X-ray Fluorescence Analysis	Janssens	1
Biocalorimetry: Applications of Calorimetry in the	Ladbury	1
Biological Sciences		
Introduction To Thermal Analysis	Brown	2

High Temperature Properties and Thermal Decomposit	Stern	1			
ion					
Characterisation Of Polymers By Thermal Analysis	Groenewoud	1			
Thermal Analysis	Quinn &	2			
	Hatakeyama				
Área de Físico-Química	1				
Termodinâmica e Equilíbrio	Químico				
Physical Chemistry	Atkins & De Paula	2			
Physical Chemistry: Principles and Applications in	Tinoco (Editor),	1			
Biological Sciences					
Physical Chemistry for the Chemical and Biological	Chang	1			
Sciences					
Physical Chemistry: A Molecular Approach	McQuarrie et al	1			
Physical Chemistry: With Applications to the Life	Eisenberg &	1			
Sciences	Crothers				
Problems & Solutions to Accompany Chang's Physical	Leung & Marshall	1			
Chemistry for the Chemical & Biological Sciences					
Físico-Química, v1, v2. 6ª ed (trad)	Levine, I. N.	2			
Thermodynamics and Statistical Mechanics	Attard	1			
Principles of Physical Chemistry	Raff	1			
Experiments In Physical Chemistry	Shoemaker	3			
Termodinâmica Química - Fundamentos, Métodos e	Chagas	3			
Aplicações					
Molecular Driving Forces: Statistical Thermodynamics in	Bromberg & Dill	1			
Chemistry & Biology					
Físico Química. Volume 1, 2, 9ªedição	Atkins, P. W.	4			
Fotoquímica					
Photocatalysis: Fundamentals and Applications	Serpone	1			
Surface Photochemistry	Anpo	1			
Photochemistry and Photobiology	Zewail	1			
Photocatalysis	Kaneko	1			

Chemical Aspects of Photodynamic Therapy (Advanced	Bonnett	1
Chemistry Texts)		
Organic Photochemistry: Principles and Applications	Kagan	1
Supramolecular Photosensitive and Electroactive	Nalwa	1
Materials		
Photochemical Synthesis (Best Synthetic Methods)	Ninomiya & Naito	1
Photochemistry of Planetary Atmospheres	Yung et al	1
Drugs: Photochemistry and Photostability	Albini & Fasani	1
	(editores)	
Chemistry & Light	Suppan	1
Photochemistry of Polypyridine and Porphyrin	Kalyanasundaram	1
Complexes		
Modern Molecular Photochemistry of Organic	Turro	1
Molecules		
Cinética Química e Catá	ilise	
Chemical Kinetics and Reaction Mechanisms	Espenson	1
Catalytic Chemistry	Gates	1
Catalysis in Chemistry and Enzimology	Jencks	1
Chemistry of Catalytic Process	Gates	1
Advanced Molecular Dynamics And Chemical Kinetcs	Billing	1
Principles of Physical Chemistry: Understanding Atoms,	Kuhn	1
Molecules and Supramolecular Machines		
Electrocatalysis	Lipkowski	1
Sólidos e Superfícies	s	
Introduction to Surface Chemistry and Catalysis	Samorjai	1
The Physical Chemistry of Solids	Borg	2
Physical Ceramic	Kingery	1
Chemistry of Solid-Water Interface	Stumm	1
Affinity Membranes	Klein	1
Intermolecular and Surface Forces	Israelachvili	1
Surface Chemistry and Electrochemistry of Membranes	Sorensen	1
	1	1

Nanoscience Physical Chemistry of Surfaces Adamson & Gast 2 Nanoscale Characterization of Surfaces and Interfaces Surface Tension Kling Principles of Colloid and Surface Chemistry Hiemenz & 2 Rajagopalan Nanoscale Materials in Chemistry Klabunde 1 Polymers: Chemistry and Physics of Modern Material Fundamental Principles of Polymeric Materials Rosen 1 An Introduction to Plastics Elias 1 The Physics and Chemistry of Materials Gersten & Smith Plásticos Guímica Supramolecutar Introduction to Macromolecular Science Munk 1 The Elements of Physical Chemistry: With Applications in Biology Physical Chemistry of Macromolecules: Basic Principles and Issues Principles and Methods in Supramolecular Chemistry Molecular & Supramolecular Chemistry of David 1 Macromolecular Crystallography (part A) Macromolecular Crystallography (part B) Carter 1 Molecular Modelling: Principles and Applications (2nd Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles	Surface Science: Foundations of Catalysis and	Kolasinski	1
Nanoscale Characterization of Surfaces and Interfaces Surface Tension Principles of Colloid and Surface Chemistry Principles of Colloid and Surface Chemistry Nanoscale Materials in Chemistry and Physics of Modern Material Cowe 1 Fundamental Principles of Polymeric Materials Rosen 1 An Introduction to Plastics Elias 1 Plásticos Sors et al. 1 Química Supramolecular Introduction to Macromolecular Science Munk 1 The Elements of Physical Chemistry: With Applications in Biology Physical Chemistry of Macromolecules: Basic Principles and Sun 1 Issues Principles and Methods in Supramolecular Chemistry Hans-Jorg et al. Molecular & Supramolecular Chemistry of David 1 Carbohydrates Macromolecular Crystallography (part A) Macromolecular Crystallography (part B) Química Teórica e Computacional Computer Software Applications in Chemistry Molecular Modelling: Principles and Applications (2nd Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Nanoscience		
Surface Tension Kling 1 Principles of Colloid and Surface Chemistry Hiemenz & Rajagopalan Nanoscale Materials in Chemistry Klabunde 1 Polymers: Chemistry and Physics of Modern Material Cowe 1 Fundamental Principles of Polymeric Materials Rosen 1 An Introduction to Plastics Elias 1 The Physics and Chemistry of Materials Gersten & Smith 1 Plásticos Sors et al. 1 Introduction to Macromolecular Science Munk 1 The Elements of Physical Chemistry: With Applications in Biology Physical Chemistry: With Applications in Supramolecular Chemistry Hans-Jorg et al. 1 Molecular & Supramolecular Chemistry Hans-Jorg et al. 1 Molecular & Supramolecular Chemistry David 1 Carbohydrates Abelson 1 Macromolecular Crystallography (part A) Abelson 1 Macromolecular Crystallography (part B) Carter 1 Carter 1 Computer Software Applications in Chemistry Jurs 2 Molecular Modelling: Principles and Applications (2nd Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Physical Chemistry of Surfaces	Adamson & Gast	2
Principles of Colloid and Surface Chemistry Hiemenz & 2 Rajagopalan Nanoscale Materials in Chemistry Rolymers: Chemistry and Physics of Modern Material Folymers: Chemistry and Physics of Modern Material Fundamental Principles of Polymeric Materials Rosen Introduction to Plastics Elias The Physics and Chemistry of Materials Gersten & Smith Plásticos Sors et al. Introduction to Macromolecular Science Munk The Elements of Physical Chemistry: With Applications in Biology Physical Chemistry of Macromolecules: Basic Principles and Issues Principles and Methods in Supramolecular Chemistry Molecular & Supramolecular Chemistry of Carbohydrates Macromolecular Crystallography (part A) Macromolecular Crystallography (part B) Química Teórica e Computacional Computer Software Applications in Chemistry Molecular Modelling: Principles and Applications (2nd Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Nanoscale Characterization of Surfaces and Interfaces	DiNardo	1
Nanoscale Materials in Chemistry Nanoscale Materials in Chemistry Polymers: Chemistry and Physics of Modern Material Fundamental Principles of Polymeric Materials An Introduction to Plastics Elias 1 The Physics and Chemistry of Materials Gersten & Smith Plásticos Sors et al. Introduction to Macromolecular Science Introduction to Macromolecular Science The Elements of Physical Chemistry: With Applications in Biology Physical Chemistry of Macromolecules: Basic Principles and Issues Principles and Methods in Supramolecular Chemistry Molecular & Supramolecular Chemistry of Carbohydrates Macromolecular Crystallography (part A) Macromolecular Crystallography (part B) Química Teórica e Computacional Computer Software Applications in Chemistry Molecular Modelling: Principles and Applications (2nd Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Surface Tension	Kling	1
Nanoscale Materials in Chemistry Polymers: Chemistry and Physics of Modern Material Fundamental Principles of Polymeric Materials An Introduction to Plastics Elias 1 The Physics and Chemistry of Materials Química Supramolecular Introduction to Macromolecular Science Munk The Elements of Physical Chemistry: With Applications in Biology Physical Chemistry of Macromolecules: Basic Principles and Issues Principles and Methods in Supramolecular Chemistry Molecular & Supramolecular Chemistry of David 1 Macromolecular Crystallography (part A) Macromolecular Crystallography (part B) Química Teórica e Computacional Computer Software Applications in Chemistry Molecular Modelling: Principles and Applications (2nd Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1 I Macromolecular Crystallography (Molecules, Solids, Nuclei, and Eisberg & Resnick)	Principles of Colloid and Surface Chemistry	Hiemenz &	2
Polymers: Chemistry and Physics of Modern Material Fundamental Principles of Polymeric Materials An Introduction to Plastics Elias 1 The Physics and Chemistry of Materials Gersten & Smith 1 Plásticos Sors et al. 1 Introduction to Macromolecular Science Munk 1 The Elements of Physical Chemistry: With Applications in Biology Physical Chemistry of Macromolecules: Basic Principles and Issues Principles and Methods in Supramolecular Chemistry Molecular & Supramolecular Chemistry of David 1 Macromolecular Crystallography (part A) Macromolecular Crystallography (part B) Química Teórica e Computational Computer Software Applications in Chemistry Molecular Modelling: Principles and Applications (2nd Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1		Rajagopalan	
Fundamental Principles of Polymeric Materials An Introduction to Plastics The Physics and Chemistry of Materials Gersten & Smith Plásticos Sors et al. 1 The Chysical Chemistry: With Applications in Biology Physical Chemistry of Macromolecules: Basic Principles and Issues Principles and Methods in Supramolecular Chemistry Macromolecular & Supramolecular Chemistry of Carbohydrates Macromolecular Crystallography (part A) Macromolecular Crystallography (part B) Química Teórica e Computacional Computer Software Applications in Chemistry Molecular Modelling: Principles and Applications (2nd Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Nanoscale Materials in Chemistry	Klabunde	1
An Introduction to Plastics The Physics and Chemistry of Materials Plásticos Sors et al. 1 Plásticos Química Supramolecular Introduction to Macromolecular Science Munk The Elements of Physical Chemistry: With Applications in Biology Physical Chemistry of Macromolecules: Basic Principles and Issues Principles and Methods in Supramolecular Chemistry Molecular & Supramolecular Chemistry of Carbohydrates Macromolecular Crystallography (part A) Macromolecular Crystallography (part B) Química Teórica e Computacional Computer Software Applications in Chemistry Molecular Modelling: Principles and Applications (2nd Leach 1 Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Polymers: Chemistry and Physics of Modern Material	Cowe	1
The Physics and Chemistry of Materials Plásticos Sors et al. Química Supramolecular Introduction to Macromolecular Science Munk The Elements of Physical Chemistry: With Applications in Biology Physical Chemistry of Macromolecules: Basic Principles and Issues Principles and Methods in Supramolecular Chemistry Molecular & Supramolecular Chemistry of David Carbohydrates Macromolecular Crystallography (part A) Macromolecular Crystallography (part B) Química Teórica e Computacional Computer Software Applications in Chemistry Molecular Modelling: Principles and Applications (2nd Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Fundamental Principles of Polymeric Materials	Rosen	1
Plásticos Sors et al. 1 Química Supramolecular Introduction to Macromolecular Science Munk 1 The Elements of Physical Chemistry: With Applications in Biology Physical Chemistry of Macromolecules: Basic Principles and Issues Principles and Methods in Supramolecular Chemistry Hans-Jorg et al. 1 Molecular & Supramolecular Chemistry of David 1 Carbohydrates Macromolecular Crystallography (part A) Abelson 1 Macromolecular Crystallography (part B) Carter 1 Química Teórica e Computacional Computer Software Applications in Chemistry Jurs 2 Molecular Modelling: Principles and Applications (2nd Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	An Introduction to Plastics	Elias	1
Química Supramolecular Introduction to Macromolecular Science Munk 1 The Elements of Physical Chemistry: With Applications in Biology Atkins 1 Physical Chemistry of Macromolecules: Basic Principles and Issues Sun 1 Principles and Methods in Supramolecular Chemistry Hans-Jorg et al. 1 Molecular & Supramolecular Chemistry of Carbohydrates David 1 Macromolecular Crystallography (part A) Abelson 1 Macromolecular Crystallography (part B) Carter 1 Química Teórica e Computacional Computer Software Applications in Chemistry Jurs 2 Molecular Modelling: Principles and Applications (2nd Leach 1 Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	The Physics and Chemistry of Materials	Gersten & Smith	1
Introduction to Macromolecular Science Munk 1 The Elements of Physical Chemistry: With Applications in Biology Physical Chemistry of Macromolecules: Basic Principles and Issues Principles and Methods in Supramolecular Chemistry Hans-Jorg et al. 1 Molecular & Supramolecular Chemistry of David 1 Carbohydrates Macromolecular Crystallography (part A) Abelson 1 Macromolecular Crystallography (part B) Carter 1 Química Teórica e Computacional Computer Software Applications in Chemistry Jurs 2 Molecular Modelling: Principles and Applications (2nd Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Plásticos	Sors et al.	1
The Elements of Physical Chemistry: With Applications in Biology Physical Chemistry of Macromolecules: Basic Principles and Issues Principles and Methods in Supramolecular Chemistry Molecular & Supramolecular Chemistry of David Carbohydrates Macromolecular Crystallography (part A) Macromolecular Crystallography (part B) Química Teórica e Computacional Computer Software Applications in Chemistry Molecular Modelling: Principles and Applications (2nd Leach 1 Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Química Supramolecu	lar	
Biology Physical Chemistry of Macromolecules: Basic Principles and Issues Principles and Methods in Supramolecular Chemistry Hans-Jorg et al. 1 Molecular & Supramolecular Chemistry of David 1 Carbohydrates Macromolecular Crystallography (part A) Abelson 1 Macromolecular Crystallography (part B) Carter 1 Química Teórica e Computacional Computer Software Applications in Chemistry Jurs 2 Molecular Modelling: Principles and Applications (2nd Leach 1 Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Introduction to Macromolecular Science	Munk	1
Physical Chemistry of Macromolecules: Basic Principles and Issues Principles and Methods in Supramolecular Chemistry Hans-Jorg et al. 1 Molecular & Supramolecular Chemistry of David 1 Carbohydrates Macromolecular Crystallography (part A) Abelson 1 Macromolecular Crystallography (part B) Carter 1 Química Teórica e Computacional Computer Software Applications in Chemistry Jurs 2 Molecular Modelling: Principles and Applications (2nd Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	The Elements of Physical Chemistry: With Applications in	Atkins	1
Principles and Methods in Supramolecular Chemistry Hans-Jorg et al. 1 Molecular & Supramolecular Chemistry of David 1 Carbohydrates Macromolecular Crystallography (part A) Abelson 1 Macromolecular Crystallography (part B) Carter 1 Química Teórica e Computacional Computer Software Applications in Chemistry Jurs 2 Molecular Modelling: Principles and Applications (2nd Leach 1 Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Biology		
Principles and Methods in Supramolecular Chemistry Hans-Jorg et al. 1 Molecular & Supramolecular Chemistry of David 1 Carbohydrates Macromolecular Crystallography (part A) Abelson 1 Macromolecular Crystallography (part B) Carter 1 Química Teórica e Computacional Computer Software Applications in Chemistry Jurs 2 Molecular Modelling: Principles and Applications (2nd Leach 1 Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Physical Chemistry of Macromolecules: Basic Principles and	Sun	1
Molecular & Supramolecular Chemistry of Carbohydrates Macromolecular Crystallography (part A) Macromolecular Crystallography (part B) Carter 1 Química Teórica e Computacional Computer Software Applications in Chemistry Molecular Modelling: Principles and Applications (2nd Leach 1 Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Issues		
Carbohydrates Macromolecular Crystallography (part A) Macromolecular Crystallography (part B) Carter 1 Química Teórica e Computacional Computer Software Applications in Chemistry Molecular Modelling: Principles and Applications (2nd Leach 1 Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Principles and Methods in Supramolecular Chemistry	Hans-Jorg et al.	1
Macromolecular Crystallography (part A) Macromolecular Crystallography (part B) Carter 1 Química Teórica e Computacional Computer Software Applications in Chemistry Molecular Modelling: Principles and Applications (2nd Leach 1 Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Molecular & Supramolecular Chemistry of	David	1
Macromolecular Crystallography (part B) Carter 1 Química Teórica e Computacional Computer Software Applications in Chemistry Molecular Modelling: Principles and Applications (2nd Leach 1 Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Carbohydrates		
Química Teórica e Computacional Computer Software Applications in Chemistry Jurs 2 Molecular Modelling: Principles and Applications (2nd Edition) Leach 1 Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Macromolecular Crystallography (part A)	Abelson	1
Computer Software Applications in Chemistry Molecular Modelling: Principles and Applications (2nd Leach 1 Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Macromolecular Crystallography (part B)	Carter	1
Molecular Modelling: Principles and Applications (2nd Leach 1 Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Química Teórica e Comput	acional	
Edition) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Computer Software Applications in Chemistry	Jurs	2
Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Eisberg & Resnick 1	Molecular Modelling: Principles and Applications (2nd	Leach	1
	Edition)		
Particles	Quantum Physics of Atoms, Molecules, Solids, Nuclei, and	Eisberg & Resnick	1
	Particles		

Ab Initio Calculations of Confirmational Effects of	Born	1
Amorphous Polymers		
Intelligent Software for Chemical Analysis	Buydens &	1
	Schoenmakers	
Introduction Computational Chemistry	Jensen	2
Chemists Electronic Book of Orbitals (book + Cd Rom)	Clark	1
Chemical Applications of Density-functional Theory	Laird	1
Chemical Applications of Group Theory	Cotton	1
Chemical Bonds: a Dialog	Burdet	1
Combinatorial Chemistry: Synthesis & Application	Wilson	1
Mathematicas Programs for Physical Chemistry	Cropper	1
Applied Mathematics for Physical Chemistry	Barrante	1
Hydrogen Bonding: A Theoretical Perspective	Scheiner	1
Espectroscopia		
Fundamentals of Molecular Spectroscopy	Struve	2
Characterization of Catalytic Materials	Wachs	2
Molecular Fluorescence: Principles and Applications	Valeur	1
Laser Fundamentals	Silfvast	1
IR Spectroscopy: An Introduction	Günzler	1
Laser Raman Spectroscopy	Tobin	1
A Complete Introduction to Modern NMR Spectroscopy	Macomber	1
Organic Structural Spectroscopy	Lambert et al.	1
Microwave Spectroscopy	Townes	1
Modern Spectroscopy	Hollas	1
Electron Spin Resonance: A Comprehensive Treatise	Charles P., Jr	1
on Experimental Techniques	Poole	
Nexafs Spectroscopy (Springer Series in Surface Sciences,	Stohr	1
Vol 25)		
An Introduction to Surface Analysis by XPS and AES	Watts &	1
	Wostenholme	
Photoelectron Spectroscopy	Hafner	2

Electronic Structure Studies Using Resonant X-Ray and	Magnuson	1
Photoemission Spectroscopy		
Introduction to Spectropolarimetry	Iniesta	1
Mossbauer Spectroscopy of Environmental Materials	Murad & Cashion	1
and Their Industrial Utilization		
Raman & Infrared Chemical Imaging	Morris	1
Físico-química Gera		
The Colours of Life	Milgrom	1
Chemistry Under Extreme and Non – Classical	van Eldik	1
Condition		
Físico-química de àguas	Mellado	2
150 & More Basic Nmr Experiments	Braun	1
CO ₂ Laser Cutting	Powell	1
Color: a Multidisciplinary Approach	Zollinger	1
Color – An Introduction to Practice and Principle	Kuehni	1
Adhesion Science	Comyn	1
Advanced Problems in Applied Chemistry	Oconnor	1
Advances In Aerosol Gas Filtration	Spurny	1
Advances In Chemical Propulsion: science to	Roy	1
Chemical Property Estimation: theory & Application	Baum	1
Conceptual Design of Chemical Processes	Douglas	1
Advances in Chemical Propulsion: Science to	Roy	1
Technology		
Lasers In Chemistry	Andrews	1
Área de Química Inorgânica	1	1
Química Inorgânica Desc	ritiva	
Concepts and Models of Inorganic Chemistry	McDaniel et al.	2
Inorganic Chemistry	Miessler	2
Modern Inorganic Chemistry	Jolly	2
Advanced Inorganic Chemistry	Murillo et al.	2
Fundamentals Of Inorganic Chemistry	Wilcox	1

Descriptive Inorganic Chemistry	Rayner-Canham	1
Química Inorgânica	Shriver & Atkins	3
Elements of Inorganic Photochemistry	Ferraudi	1
Inorganic Structural Chemistry	Muller	2
Inorganic Chemistry of Main Group Elements	King	1
Physical Inorganic Chemistry	Kettle	1
Chemical Bond	Burdett	2
Chemistry Of The Elements	Greenwood &	1
	Earnhaw	
Inorganic Chemistry Principles of Structure & Reactivity	Huheey	2
Síntese de Compostos Inor	gânicos	L
Synthesis And Technique In Inorganic Chemistry	Girolami &	2
	Rauchfuss	
Synthesis And Characterization Of Inorganic	Jolly	2
Compounds		
Inorganic Experiments	Woolins	2
Inorganic Reactions and Methods V 1-18	Atwood	1
Chemical Synthesis of Advanced Ceramic Materials	Segal	1
Chemical Approaches to Systhesis of Inorganic	Rao	1
Materials		
Advances in Inorganic Chemistry V. 45	Sykes	1
Progress in Inorganic Chemistry V. 49	Karlin	1
Synthetic Methods of Organometallic and Inorganic	Herrmann	2
Chemistry		
Progress in Inorganic Chemistry V. 50	Karlin	1
Progress in Inorganic Chemistry V. 51	Karlin	1
Progress in Inorganic Chemistry V. 52	Stiefel	1
Inorganic Synthesis	Darensbourg	1
Template Synthesis	Gerbeleu	1
Caracterização de Compostos Inorgânicos		

Infrared And Raman Spectra Of Inorganic And	Nakamoto	2	
Coordination Compounds			
Fourier Transform Infrared Spectroscopy	Griffiths	1	
Elements of Molecular Symmetry	Ohrn	1	
Inorganic Eletronic Structure & Spectroscopy (2 VIs	Solomon	1	
Set)			
Structural Methods of Inorganic Chemistry	Ebsworth	1	
Nature Of The Chemical Bond And The Structure Of	Pauling	1	
Molecules			
Química dos Materiai	is		
Ciência e Engenharia de Materiais – Uma Introdução	Callister Jr.	1	
Biomimetic Materials Chemistry	Mann	1	
Buckminsterfullerenes	Billups	1	
Principles of Powder Technology	Rhodes	1	
Inorganic Materials	O'Hare	1	
Chemistry of Advanced Materials	Interrante	1	
Nanoscale Materials in Chemistry	Klabunde	1	
Colour an Optical Properties of Materials	Tilley	1	
Hidroxyapatite and Related Materials	Brown	1	
Modelling of Minerals and Silicate Materials	Silvi	1	
Materials Cristal Chemistry	Buchanan	1	
Active Metals	Furstner	1	
High Performance Non-Oxide Ceramics I	Jansen	1	
High Performance Non-Oxide Ceramics II	Jansen	1	
Introduction To Glass Science & Technology	Shelby	1	
Nanostructured Materials	Hofmann	1	
Carbon Nanotubes: preparation & Properties	Ebbesen	1	
Transition Metal Oxides: Structure, Properties & Synthesis of	Rao	1	
Ceramic Oxide			
Química dos Sólidos e Superfícies			
Crystallization Processes	Ohtaki	1	

Admixtures in Cristallization	Nyvlt	1
Solid State Chemistry and Its Applications	West	1
Crystal Structure Determinations	Massa	1
Solid State Chemistry	Wold	2
Chemically Modified Surfaces	Mottola	1
Introduction To Coordination, Solid State and Descriptive	Rodgers	1
Inorganic Chemist		
Silica Gel and Bonded Phases	Scott	1
Surface Activity: principles, Phenomena & Applications	Tsujii	2
Integrated Chemical Systems: A Chemical Approach to	Bard	1
Nanotechnology		
The Chemistry of Silica: Solub. Polym., Colloid and Surf	ller	1
Properties		
Chemical Properties of Material Surfaces	Kosmulski	1
Basic Solid-State Chemistry	West	2
Metal-Surface Reaction	Shustorovich	1
Synthesis of Organometallic Compounds: Practical	Komiya	1
Guide		
Área de Química Orgânica		
Química Orgânica Desci	ritiva	
Organikum	Heinz Becker at al.	1
Neoquímica Moderna e Suas Aplicações	Hall	3
Química Orgânica	Vollhardt et al.	3
Nomenclatura dos Compostos Orgânicos	Campos	2
Nomenciatura dos compostos Organicos	Campos	2
Orbital Interaction Theory of Organic Chemistry	Rauk	1
Schaum's 3000 Solved Problems in Organic Chemistry	Meishlich et al.	1
Organic Chemistry	Clayden, Greeves,	1
	Warren & Wothers -	
Basic Principles of Organic Chemistry	Roberts & Caserio	2

Organic Chemistry	Brown, Iverson,	1
	Anslyn, Foote	
Reatividade de Compostos C)rgânicos	
Organic Reaction Mechanism	Gallego & Sierra	1
Writing Reaction Mechanisms in Organic Chemistry	Audrey & Solomon	1
Mecanismos de Reações Orgânicas	Pelisson	2
Art of Writing Reasonable Organic Reaction	Grossman	2
Mechanisms		
Heterogeneous Catalysis in Organic Chemistry	Smith	1
Mechanism and Theory in Organic Chemistry	Lowry &	1
	Richardson	
Theoretical Organic Chemistry	Párkányi	1
Modern Physical Organic Chemistry	Anslyn & Dougherty	1
Pericyclic reactions: A mechanism and problem-solving	Kumar, Kumar &	1
approach	Singh	
Preparação de Compostos O	rgânicos	
Vogel's Textbook of Practical Organic Chemistry	Fourniss	1
Experimental Organic Chemistry – A Balanced	Mohrig	1
Approach: Macroscale and Microscale		
Laboratory Manual for Organic Chemistry	Moore & Winston	1
Microscale And Miniscale Organic Chemistry Laborat	Schoffstall et al.	1
ory		
Experimental Organic Chemistry: A Miniscale Approach	Roberts	1
Techniques & Experiments for Organic Chemistry	Ault	1
Análise Orgânica Instrum	nental	
Identificação Espectrométrica de Compostos Orgânicos	Silverstein	2
Mass Spectrometry	Barker	1
Systematic Identification of Organic Compounds	Shriner	2
NMR Spectroscopy: Basic Principles, Concepts and	Gunther	1
Applications in Chemistry		

Guide to Spectroscopic Identification of Organic	Feinstein	1
Compounds		
Structure elucidation by NMR in Organic Chemistry – A	Breitmeier	1
practical guide		
Mass spectrometry basics	Herbert	1
A complete introduction to modern NMR spectroscopy	Macomber	1
An introduction to mass spectrometry	Van Bramer	1
Nuclear Magnetic Resonance – Applications to organic	Roberts	1
chemistry		
Basic 1H- and 13C-NMR spectroscopy	Balci	1
NMR spectroscopy	Lambert & Mazzola	1
Introdução à Espectroscopia	Pavia & Lampman	2
	& Kriz & Vyvyan	
Química dos Produtos Na	turais	
Natural Products Isolation: Methods and Protocols	Cannell	1
Total Synthesis of Natural Products	Goldsmith	1
Asymetric Synthesis of Natural Products	Koskinen	1
Bioorganic Chemistry	Dugas	1
Princípios Ativos de Plantas Superiores	Hostettmann	2
Biotransformations In Organic Chemistry	Faber	1
Plantas Medicinais na Amazônia e na Mata Atlântica	Stasi	2
Farmacognosia – Da Planta ao Medicamento	Simões et al.	2
Natural Products Isolation	Cannell	1
Biotransformations In Organic Chemistry	Faber	1
The Role of Natural Products in Drug Discovery	Mulzer	1
Alkaloids: Chemistry & Biology	Cordell	1
Botânica Angiospermae: Taxonomia, Morfologia,	Agarez et al.	1
Reprodução, Chave Para Determinação Das Famílias		
Bioquímica		
Amino Acid and Peptide Systhesis	Jones	1
Fundamentos de Bioquímica	Voet	2

Bioquímica Ilustrada	Champe & Harvey	1
Advanced Organic Chemistry of Nucleic Acids	Shabarova	1
Concepts Of Chemical Dependency	Doweiko	1
Outras Áreas da Química		
Química Geral		
Chemistry Connections: The Chemical Basis of Everyday	Karukstis & Van	1
Phenomena	Hecke	
General Chemistry	Pauling	1
Access to Chemistry	Jones	1
The Extraordinary Chemistry of Ordinary Things:	Snyder	2
Textbook and Student Study Guide		
Chemistry: The Study of Matter and ints Change	Brady	1
Experiments In General Chemistry	Wentworth	2
Exploring Chemistry Lab Experiments	Peller	2
Chemistry Science of Change	Oxtoby	1
Química em Tubos de Ensaio	Bessler & Neder	3
Chemical Curiosities	Roesky	1
Chemistry: An Experimental Science	Bodner	1
Chemistry In Action	Freemantle	1
Chemistry of Fireworks	Russell	1
Chemistry of Upper & Lower Atmosphere	Finlayson	1
Chemistry of Water	Kegley	1
Chemistry and Your World	Gebelein	1
Moléculas em Exposição	Emsley	2
Segurança em Laboratórios		
Chemistry in the Laboratory	Beran	1
Accident abd Emergency Management	Theodore	2
Hazards In the Chemical Laboratory	Royal Society of	1
	Chemistry	
Rapid Guide to Chemical Incompatibilities	Pohanish	1
Manual de Biossegurança	Hirata	2

Obras de Referência	1	
Handbook of Chemistry & Physics Crcnetbase Cd-rom	Lide	1
The Catalyst Handbook	Twigg	1
Handbook Of Food Analytical Chemistry, V.2	Acree et al.	1
Handbook Of Food Analytical Chemistry, V1	Decker et al.	1
Langes Handbook of Chemistry	Dean	1
Handbook of Inorganic Chemistry	Perry	1
Inorganic Chemicals Handbook	Micketta	1
Laboratory Companion: Practical Guide to Materials	Coyne	1
Equipament & Technique		
Properties of Inorganic Compounds: an Electronic Database	Phillips	1
Vers 2.0		
Handbook of Infrared and Raman Characteristics	Lin-Vien	1
Frequencies of Organic Molecules		
Comprehensive Handbook of Calorimetry and Thermal	Japan Soc. Of	1
Analysis	Calorimetry and	
	Thermal Analysis/	
	Sorai	
Handbook of Ion Exchange Resins: Their Application to	Korkish	1
Inorganic Analysis		
Methods of Air Sampling and Analysis	Lodge	1
Handbook On Reference Methods for Soil Analysis	Jones	1
Handbook of Reference Methods for Plant Analysis	Kaira	1
Epas Sampling & Analysis Methods Database Version	Keith	1
2.0 (3 Disks)		
Compilation of Epas Sampling & Analysis Methods	Keith	1
Educação em Químic	a	I
Dicionário Escolar De Química	Mateus	1
Aprendendo Química	Romanelli & Justi	1
Educar O Cidadão?	Canivez	1
O Professor e o Currículo de Ciências: Temas Básicos de Educação e Ensino	Krasichik,	1

Aprender Ciências: Um Mundo De Materiais	Castro Lima, et al.	1
Bachelarel E A Química No Ensino Médio E Na Pesquisa	Parente	1
Planejamento Como Prática Educativa	Gandin	1
Aulas Práticas De Química	Oliveira	1
Metodologia Do Ensino De Ciências	Delizoicov & Angotti	1
Catalisando Transformações Na Educação	Chassot	1
Para Que(M) É Útil O Ensino?	Chassot	1
Química	Bertrand & Ciscato	1
Uma Ideia De Pesquisa Educacional	Azanha	1
Currículo, Cultura E Sociedade	Moreira & Silva	1
Química Para O Magistério	Ambrogii et al.	1
Tópicos Em Ensino De Ciências	Axt	1
Ciência ConSciência	Chassot	1
Formação Continuada do Professor de Química	Maldaner	1
Chemcom: Chemistry in the Community	Kendall	1
Essential Math for Chemistry Students	Ball	1
Chemical Creativity: ideas from the work of Woodward, Huckel, Meerwein	Berson	1
Teaching Chemistry with Toys	Sarquis	1
Química Para O Ensino Médio	Machado & Mortimer	1
Coleção Educação para Ciências (3 Vol.)	Nardi	1
Alfabetização Científica	Chassot	1
1001 Chemicals In Everyday Products	Lewis	1
Construindo o Saber – Técnicas de Metodologia Científica	Carvalho	1
Cotidiano e Educação em Química	Lutfi	1
Ajudar a Ensinar – Relações entre a Didática e o Ensino	Feldman	1
Aprendendo a Mudar – O Ensino para Além dos Conteúdos e da Padronização	Hargreaves	1
Compreender e Transformar o Ensino	Sacristan	1
Computador na Educação-Guia para o Ensino com Novas Tecnologias	Gasparetti	1
Ensino e a Formação do Professor	Kleiman	1

Ensino, Aprendizado e Discurso em Sala de Aula	Coll	1
Inteligências Múltiplas: Ensino e Aprendizado	Campbell	1
Metodologia do Ensino Superior	Gil	1
Os Procedimentos Educacionais: Aprendizagem, Ensino e Avaliação	Valls	1
Professores de Ensino Superior: Características e Qualidades	Abud	1
Questão de Gênero no Ensino de Ciências	Moro	1
Tendências da Educação Superior para o Século XXI	Conf. Mundial Sobre Ens. Superior, Anais, Paris, 1998	1
História da Química		
Pequena História Da Química - Primeira Parte: Dos Primórdios A Lavoisier	Maar	1
História da Balança e a Vida De J. J. Berzelius	Rheinboldt	1
Da Alquimia À Química	Goldfarb	1
História da Química	Vidal	1
Alquimistas e Químicos: O Passado, O Presente E O Futuro	Vanin,	1
Chemical History Tour: picturing Chemistry from Alchemy to Modern Molecular	Greenberg	1
Historia da Quimica	Bensaude-Vicent & Stengers	1
História das Técnicas	Ducasse	1
Breve Historia De La Química	Asimov	1
Historia De La Química	Brock	1

E) RECURSOS DE LABORATÓRIOS:

1- Recursos existentes de laboratório

A estrutura física dos laboratórios foi abordada na seção sobre estrutura física. Entretanto, o seu funcionamento envolve a aquisição de materiais e equipamentos comuns a todos os laboratórios, bem como a reposição de equipamentos obsoletos ou com avaria.

Atualmente, esses laboratórios dispõem dos materiais relacionados na tabela xx

Tabela xx: Relação de equipamentos contidos nos laboratórios de Química

EQUIPAMENTO	Un.	EQUIPAMENTO	Un.
Agitador Magnético / Aquecimento	07	Chapa de Aquecimento	02
Agitador Mecânico	01	Condutivímetro	02
Aparelho para Ponto de Fusão	01	Desmineralizador de Água	01
Balança Analítica	05	Destilador	01
Balança Semi – Analítica	04	Estufa de Esterilização e Secagem	03
Banho - Maria com Circulação	02	Forno Mufla	03
Banho de Areia	02	Manta de Aquecimento, 250 mL	04
Bomba de Vácuo	07	Manta de Aquecimento, 500 mL	05
Capela Grande	02	pH-Metro	04
Capela Pequena	02	Viscosímetro	01
Centrífuga	03		

Tabela com relação de materiais contidos nos laboratórios de Química

DESCRIÇÃO	Un.	DESCRIÇÃO	Un.
Adaptador para termômetro	08	Garra simples	30
Argola para funil metálico	48	Garrafa para gás	05
Balão destilação	69	Grau com Pistilo	11
Balão volumétrico	160	Junta para destilação	13
Barril de vidro c/ torneira plástica	04	Kitassato	50
Barrilhete	04	Mufa	08
Bastão de vidro	42	Pêra de Borracha	26
Béquer	270	Pesa filtro forma baixa	04
Bureta	25	Picnômetro de 25 mL	26
Bureta graduada sem torneira	15	Pinça de madeira	35
Cadinho de Porcelana	33	Pinça de Mohr	11
Caixa de tubo capilar (500 unidades)	01	Pinça dupla p/ bureta e mufa	10
Cápsula de porcelana	13	Pinça metálica grande	09
Coluna Cromatográfica	04	Pipeta graduada	110

Coluna de fracionamento	07	Pipeta volumétrica	90
Condensador	16	Pissete	35
Conjunto Extrator	04	Proveta graduada	140
Cubas cromatográficas	04	Suporte para tubo de ensaio	32
Dessecador	12	Suporte triangular p/ pipetas	07
Erlenmeyer	135	Suporte Universal de ferro	20
Escova cilíndrica	06	Tela de amianto	31
Escova p\ bureta	12	Termômetro	40
Espátula de aço inox	05	Triângulo de porcelana	16
Estante p/ tubo de ensaio	16	Tripé de ferro	31
Frasco âmbar c/ tampa esmerilhada	80	Trompa de vácuo metálica	03
Frasco de plástico conta gotas	50	Tubo cônico graduado	66
Frasco p/ saponificação tipo pera	04	Tubo de ensaio	800
Funil de Büchner	19	Tubo de Thiele	15
Funil de Separação de 250 mL	35	Vareta de platina	04
Funil de vidro placa porosa 30 mL	01	Vidro de cobalto	03
Funil de vidro	23	Vidro de relógio	90
Garra para bureta com mufa	12	Garra para condensador	36
Garra simples	30		

Além dos laboratórios de Química, há um laboratório de Análise Instrumental com área e estrutura semelhantes às dos outros laboratórios. Entretanto, esse é um espaço reservado para instrumentos analíticos como espectrofotômetros, polarímetro, fotômetro de chama etc. Esses, por sua vez, apresentam custos elevados de aquisição e manutenção e exigem um maior cuidado no manuseio, que deve ser supervisionado pelos docentes das disciplinas que os utilizam. Esse laboratório dispõe dos seguintes equipamentos: Espectrofotômetro UV/VIS de varredura marca Shimadzu, Espectrofotômetro VIS ponto-a-ponto marca Micronal, Fotômetro de chama marca Digimed, Polarímetro marca Bellingham+Stanley Ltd, Cromatógrafo de fase gasosa, Fotocolorímetro marca Analyser, Espectrômetro de infravermelho de varredura marca Perkin Elmer.

2- Recursos de laboratório necessário

A atual lista de equipamentos e materiais está distribuída nos 7 laboratórios de ensino atuais, permitindo o funcionamento das aulas experimentais do curso com certa dificuldade, já que são necessários deslocamentos constantes desses entre os laboratórios, por conta da demanda elevada, causando problemas à realização de algumas práticas.

Para que a atual estrutura funcione em condições mínimas suficientes e com poucos problemas, será necessário no mínimo a duplicação dessas listas, a aquisição de novos equipamentos e o conserto daqueles equipamentos que não estão funcionando. Portanto, são necessários um investimento de no mínimo 100 mil reais (R\$ 100.000,00), uma vez que estes laboratórios além de atender aos acadêmicos do curso de Química Licenciatura, também atendem aos cursos de Química Bacharelado, Engenharia Química e Engenharia de Pesca.

Assim, a atual estrutura do curso de Química não inviabiliza a formação do profissional da Química, contudo, caso se perpetue a deficiência em investimentos, essa formação será prejudicada e, em muitos casos, a deficiência na formação e a defasagem em itens de segurança laboratorial poderá se tornar insustentável.

F) OUTROS RECURSOS NECESSÁRIOS

LABORATÓRIOS DIDÁTICOS

a) Laboratório Didático para Ensino de Química

Esse laboratório deve estar montado com bancada de experimentos com pia; estante para livros de consulta da área, equipamentos de áudio e vídeo (televisão, videocassete, câmera fotográfica, filmadora), computadores com impressora e scanner (três unidades), mesa para reuniões, quadro negro e cadeiras para o desenvolvimento das aulas.

b) Laboratório de Química Inorgânica

Para esse laboratório, há a necessidade de aquisição de uma capela de exaustão para trabalhos com substâncias voláteis; quatro banhos termostatizados; um viscosímetro rotativo; um viscosímetro de Ostwald; um forno mufla aberto; dois pHmetros digitais com eletrodo de vidro combinado; cinco dessecadores; um kit para destilação "short-path"; duas colunas de fracionamento tipo *rasching* 50 cm c/ juntas macho/fêmea 24/40 (pyrex); duas bombas peristálticas; cinco bombas de vácuo; dois aparelhos de digestão e destilação de Kjeldahl; um sistema de destilação de água de alta pureza com deionizadores ou sistema de osmose reversa; uma câmara seca com controle de pressão; cinco balanças analíticas; e dois Varian.

c) Laboratório Didático de Análise Instrumental

Este laboratório necessita de equipamentos de análise instrumental básicos de bancada, de baixo custo, próprios para o uso didático, tais como: Espectrômetro de RMN portátil de 60 MHz marca Nanalysis; Mini Cromatógrafo Gasoso plus marca Vernier + seringa; Espectrofotômetro portátil de UV/Vis marca Vernier; Espectrômetro portátil de emissão marca Vernier; Espectrômetro de Absorção Atômica marca Buck Scientific; Espectrômetro de varredura no infravermelho marca Buck Scientific; Fotômetro de chama marca Digimed; HPLC isocrático marca Buck Scientific; Espectrofotômetro de varredura mono feixe marca Marconi.

d) Laboratório de Química Orgânica

Para este laboratório seria necessário um aparelho de rotação óptica, aparelho de verificação de ponto de fusão, bomba a vácuo, sistemas de micro destilação.

Outras Necessidades

É de extrema importância para o bom andamento das atividades do curso, a manutenção de equipamentos e instalações, bem como a reposição de reagentes e vidrarias necessários às atividades experimentais previstas e executadas a partir desse PPP. Além disso, essa estrutura é utilizada também por acadêmicos dos demais cursos (Engenharia Química e de Pesca) do CECE, o que precisa ser levado em consideração quando da distribuição dos recursos financeiros destinados aos cursos de graduação. Outra questão a ser levantada é que, por se tratar de um curso com alta carga horária exigida legalmente em atividades experimentais, o curso de Química Licenciatura apresenta um dos maiores custos de manutenção para a instituição, em comparação com outras Licenciaturas.

Ressalta-se ainda a necessidade de gabinetes equipados com linha telefônica, móveis, computadores e acesso à internet para todos os docentes atuantes no curso, atendendo minimamente aos requisitos de salubridade e comodidade, para fins do desenvolvimento de suas atividades, além daquelas em sala de aula. Esse espaço pode ser compartilhado ou não, entretanto, há que se levar em conta a razoabilidade do fluxo de pessoas para que o compartilhamento dos espaços não traga prejuízo às atividades ali realizadas por estes docentes.